Sampling and Reconstruction

Size: px
Start display at page:

Download "Sampling and Reconstruction"

Transcription

1 Sampling and Reconstruction Peter Rautek, Eduard Gröller, Thomas Theußl Institute of Computer Graphics and Algorithms Vienna University of Technology

2 Motivation Theory and practice of sampling and reconstruction Aliasing Understanding the problem Handling the problem Examples: Photography/Video Rendering Computed Tomography Collision detection Eduard Gröller, Thomas Theußl, Peter Rautek 1

3 Overview Introduction Tools for Sampling and Reconstruction Fourier Transform Convolution (dt.: Faltung) Convolution Theorem Filtering Sampling The mathematical model Reconstruction Sampling Theorem Reconstruction in Practice Eduard Gröller, Thomas Theußl, Peter Rautek 2

4 Image Data Demo - Scan Lines - Sampling Eduard Gröller, Thomas Theußl, Peter Rautek 3

5 Image Storage and Retrieval Eduard Gröller, Thomas Theußl, Peter Rautek 4

6 Sampling Problems Eduard Gröller, Thomas Theußl, Peter Rautek 5

7 Overview Introduction Tools for Sampling and Reconstruction Fourier Transform Convolution (dt.: Faltung) Convolution Theorem Filtering Sampling The mathematical model Reconstruction Sampling Theorem Reconstruction in Practice Eduard Gröller, Thomas Theußl, Peter Rautek 6

8 Sampling Theory Relationship between signal and samples View image data as signals Signals are plotted as intensity vs. spatial domain Signals are represented as sum of sine waves - frequency domain Eduard Gröller, Thomas Theußl, Peter Rautek 7

9 Square Wave Approximation Eduard Gröller, Thomas Theußl, Peter Rautek 8

10 Fourier Series Eq1: f( x) a 2 0 An cos( nx n) n1 Eq2: f( x) a 2 0 an cos( nx) bn sin( nx) n1 Eq3: f( x) c e inx n n Euler s identity: e ix cos x i sin x Eduard Gröller, Thomas Theußl, Peter Rautek 9

11 Fourier Transform Link between spatial and frequency domain F(ω) f( x) f( x) e F(ω) e 2πiωx 2πiωx dx d Eduard Gröller, Thomas Theußl, Peter Rautek 10

12 Box & Tent Eduard Gröller, Thomas Theußl, Peter Rautek 11

13 Square Wave & Scanline Eduard Gröller, Thomas Theußl, Peter Rautek 12

14 Fourier Transform Yields complex functions for frequency domain Extends to higher dimensions Complex part is phase information - usually ignored in explanation and visual analysis Alternative: Hartley transform Wavelet transform Eduard Gröller, Thomas Theußl, Peter Rautek 13

15 Discrete Fourier Transform For discrete signals (i.e., sets of samples) Complexity for N samples: DFT O(N²) f( x) F(ω) N-1 ω0 1 N F(ω) e N-1 ω0 Fast FT (FFT): O(N log N) 2jx f(x) e N -2jx N Demo - Fast Fourier Transform - Different Frequencies Eduard Gröller, Thomas Theußl, Peter Rautek 14

16 Overview Introduction Tools for Sampling and Reconstruction Fourier Transform Convolution (dt.: Faltung) Convolution Theorem Filtering Sampling The mathematical model Reconstruction Sampling Theorem Reconstruction in Practice Eduard Gröller, Thomas Theußl, Peter Rautek 15

17 Convolution Operation on two functions Result: Sliding weighted average of a function The second function provides the weights ( f g)( x) f ( x ) g( ) d Demo - Copying (Dirac Pulse) - Averaging (Box Filter) Eduard Gröller, Thomas Theußl, Peter Rautek 16

18 Convolution - Examples Eduard Gröller, Thomas Theußl, Peter Rautek 17

19 Convolution Theorem The spectrum of the convolution of two functions is equivalent to the product of the transforms of both input signals, and vice versa. f 1 f 2 F F 1 2 F 1 F 2 f 1 f 2 Eduard Gröller, Thomas Theußl, Peter Rautek 18

20 Example - Low-Pass Low-pass filtering performed on Mandrill scanline Spatial domain: convolution with sinc function Frequency domain: cutoff of high frequencies - multiplication with box filter Sinc function corresponds to box function and vice versa! Eduard Gröller, Thomas Theußl, Peter Rautek 19

21 Low-Pass in Spatial Domain 1 Eduard Gröller, Thomas Theußl, Peter Rautek 20

22 Low-Pass in Spatial Domain 2 Eduard Gröller, Thomas Theußl, Peter Rautek 21

23 Overview Introduction Tools for Sampling and Reconstruction Fourier Transform Convolution (dt.: Faltung) Convolution Theorem Filtering Sampling The mathematical model Reconstruction Sampling Theorem Reconstruction in Practice Eduard Gröller, Thomas Theußl, Peter Rautek 22

24 Sampling The process of sampling is a multiplication of the signal with a comb function f s ( x ) f ( x ) comb ( ) T x The frequency response is convolved with a transformed comb function. F s ( ) F( ) comb ( ) 1 T Eduard Gröller, Thomas Theußl, Peter Rautek 23

25 Base Functions Dirac Pulse Comb Function Eduard Gröller, Thomas Theußl, Peter Rautek 24

26 FT of Base Functions Comb function: comb T ( x) comb 1 T (ω) Eduard Gröller, Thomas Theußl, Peter Rautek 25

27 Overview Introduction Tools for Sampling and Reconstruction Fourier Transform Convolution (dt.: Faltung) Convolution Theorem Filtering Sampling The mathematical model Reconstruction Sampling Theorem Reconstruction in Practice Eduard Gröller, Thomas Theußl, Peter Rautek 26

28 Reconstruction Recovering the original function from a set of samples Sampling theorem Ideal reconstruction Sinc function Reconstruction in practice Eduard Gröller, Thomas Theußl, Peter Rautek 27

29 Definitions A function is called band-limited if it contains no frequencies outside the interval [-u,u]. u is called the bandwidth of the function The Nyquist frequency of a function is twice its bandwidth, i.e., w = 2u Eduard Gröller, Thomas Theußl, Peter Rautek 28

30 Sampling Theorem A function f(x) that is band-limited and sampled above the Nyquist frequency is completely determined by its samples. Eduard Gröller, Thomas Theußl, Peter Rautek 29

31 Sampling at Nyquist Frequency Eduard Gröller, Thomas Theußl, Peter Rautek 30

32 Sampling Below Nyquist Frequency Demo - Under sampling - Nyquist Frequency Eduard Gröller, Thomas Theußl, Peter Rautek 31

33 Ideal Reconstruction Replicas in frequency domain must not overlap Multiplying the frequency response with a box filter of the width of the original bandwidth restores original Amounts to convolution with Sinc function Eduard Gröller, Thomas Theußl, Peter Rautek 32

34 Sinc Function Infinite in extent Ideal reconstruction filter FT of box function sinc( x) sinx πx 1 if if x x 0 0 Eduard Gröller, Thomas Theußl, Peter Rautek 33

35 Sinc & Truncated Sinc Eduard Gröller, Thomas Theußl, Peter Rautek 34

36 Reconstruction: Examples Sampling and reconstruction of the Mandrill image scanline signal with adequate sampling rate with inadequate sampling rate demonstration of band-limiting With Sinc and tent reconstruction kernels Eduard Gröller, Thomas Theußl, Peter Rautek 35

37 Adequate Sampling Rate Eduard Gröller, Thomas Theußl, Peter Rautek 36

38 Adequate Sampling Rate Eduard Gröller, Thomas Theußl, Peter Rautek 37

39 Inadequate Sampling Rate Eduard Gröller, Thomas Theußl, Peter Rautek 38

40 Inadequate Sampling Rate Eduard Gröller, Thomas Theußl, Peter Rautek 39

41 Band-Limiting a Signal Eduard Gröller, Thomas Theußl, Peter Rautek 40

42 Band-Limiting a Signal Eduard Gröller, Thomas Theußl, Peter Rautek 41

43 Reconstruction in Practice Problem: which reconstruction kernel should be used? Genuine Sinc function unusable in practice Truncated Sinc often sub-optimal Various approximations exist; none is optimal for all purposes Eduard Gröller, Thomas Theußl, Peter Rautek 42

44 Tasks of Reconstruction Filters Remove the extraneous replicas of the frequency response Retain the original undistorted frequency response Eduard Gröller, Thomas Theußl, Peter Rautek 43

45 Used Reconstruction Filters Nearest neighbour Linear interpolation Symmetric cubic filters Windowed Sinc More sophisticated ways of truncating the Sinc function Eduard Gröller, Thomas Theußl, Peter Rautek 44

46 Box & Tent Responses Eduard Gröller, Thomas Theußl, Peter Rautek 45

47 Windowed Sinc Responses Eduard Gröller, Thomas Theußl, Peter Rautek 46

48 Sampling & Reconstruction Errors Aliasing: due to overlap of original frequency response with replicas - information loss Truncation Error: due to use of a finite reconstruction filter instead of the infinite Sinc filter Non-Sinc error: due to use of a reconstruction filter that has a shape different from the Sinc filter Eduard Gröller, Thomas Theußl, Peter Rautek 47

49 Interpolation - Zero Insertion Operates on series of n samples Takes advantage of DFT properties Algorithm: Perform DFT on series Append zeros to the sequence Perform the inverse DFT Eduard Gröller, Thomas Theußl, Peter Rautek 48

50 Zero Insertion - Properties Preserves frequency spectrum Original signal has to be sampled above Nyquist frequency Values can only be interpolated at evenly spaced locations The whole series must be accessible, and it is always completely processed Eduard Gröller, Thomas Theußl, Peter Rautek 49

51 Zero Insertion - Original Series Eduard Gröller, Thomas Theußl, Peter Rautek 50

52 Zero Insertion - Interpolation Eduard Gröller, Thomas Theußl, Peter Rautek 51

53 Conclusion Sampling Going from continuous to discrete signal Mathematically modeled with a multiplication with comb function Sampling theorem: How many samples are needed Reconstruction Sinc is the ideal filter but not practicable Reconstruction in practice Aliasing Eduard Gröller, Thomas Theußl, Peter Rautek 52

54 Summary (1) Eduard Gröller, Thomas Theußl, Peter Rautek 53

55 Summary (2) Eduard Gröller, Thomas Theußl, Peter Rautek 54

56 Summary (3) Eduard Gröller, Thomas Theußl, Peter Rautek 55

57 Sampling and Reconstruction References: Computer Graphics: Principles and Practice, 2nd Edition, Foley, vandam, Feiner, Hughes, Addison-Wesley, 1990 What we need around here is more aliasing, Jim Blinn, IEEE Computer Graphics and Applications, January 1989 Return of the Jaggy, Jim Blinn, IEEE Computer Graphics and Applications, March 1989 Demo Applets, Brown University, Rhode Island, USA Eduard Gröller, Thomas Theußl, Peter Rautek 56

58 Questions Eduard Gröller, Thomas Theußl, Peter Rautek 57

Aliasing and Antialiasing. What is Aliasing? What is Aliasing? What is Aliasing?

Aliasing and Antialiasing. What is Aliasing? What is Aliasing? What is Aliasing? What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field to a discrete raster grid of pixels 1 2 What is Aliasing? What is Aliasing?

More information

Module 3 : Sampling and Reconstruction Problem Set 3

Module 3 : Sampling and Reconstruction Problem Set 3 Module 3 : Sampling and Reconstruction Problem Set 3 Problem 1 Shown in figure below is a system in which the sampling signal is an impulse train with alternating sign. The sampling signal p(t), the Fourier

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Computer Graphics (Fall 2011) Outline. CS 184 Guest Lecture: Sampling and Reconstruction Ravi Ramamoorthi

Computer Graphics (Fall 2011) Outline. CS 184 Guest Lecture: Sampling and Reconstruction Ravi Ramamoorthi Computer Graphics (Fall 2011) CS 184 Guest Lecture: Sampling and Reconstruction Ravi Ramamoorthi Some slides courtesy Thomas Funkhouser and Pat Hanrahan Adapted version of CS 283 lecture http://inst.eecs.berkeley.edu/~cs283/fa10

More information

2D Discrete Fourier Transform

2D Discrete Fourier Transform 2D Discrete Fourier Transform In these lecture notes the figures have been removed for copyright reasons. References to figures are given instead, please check the figures yourself as given in the course

More information

Exercise Problems: Information Theory and Coding

Exercise Problems: Information Theory and Coding Exercise Problems: Information Theory and Coding Exercise 9 1. An error-correcting Hamming code uses a 7 bit block size in order to guarantee the detection, and hence the correction, of any single bit

More information

Filters. Materials from Prof. Klaus Mueller

Filters. Materials from Prof. Klaus Mueller Filters Materials from Prof. Klaus Mueller Think More about Pixels What exactly a pixel is in an image or on the screen? Solid square? This cannot be implemented A dot? Yes, but size matters Pixel Dots

More information

!"!#"#$% Lecture 2: Media Creation. Some materials taken from Prof. Yao Wang s slides RECAP

!!##$% Lecture 2: Media Creation. Some materials taken from Prof. Yao Wang s slides RECAP Lecture 2: Media Creation Some materials taken from Prof. Yao Wang s slides RECAP #% A Big Umbrella Content Creation: produce the media, compress it to a format that is portable/ deliverable Distribution:

More information

Sampling and Signal Processing

Sampling and Signal Processing Sampling and Signal Processing Sampling Methods Sampling is most commonly done with two devices, the sample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquires a continuous-time signal

More information

Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau

Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau (Also see: Lecture ADSP, Slides 06) In discrete, digital signal we use the normalized frequency, T = / f s =: it is without a

More information

ECE 2111 Signals and Systems Spring 2012, UMD Experiment 9: Sampling

ECE 2111 Signals and Systems Spring 2012, UMD Experiment 9: Sampling ECE 2111 Signals and Systems Spring 2012, UMD Experiment 9: Sampling Objective: In this experiment the properties and limitations of the sampling theorem are investigated. A specific sampling circuit will

More information

Chapter-2 SAMPLING PROCESS

Chapter-2 SAMPLING PROCESS Chapter-2 SAMPLING PROCESS SAMPLING: A message signal may originate from a digital or analog source. If the message signal is analog in nature, then it has to be converted into digital form before it can

More information

Sampling Theory. CS5625 Lecture Steve Marschner. Cornell CS5625 Spring 2016 Lecture 7

Sampling Theory. CS5625 Lecture Steve Marschner. Cornell CS5625 Spring 2016 Lecture 7 Sampling Theory CS5625 Lecture 7 Sampling example (reminder) When we sample a high-frequency signal we don t get what we expect result looks like a lower frequency not possible to distinguish between this

More information

Antialiasing and Related Issues

Antialiasing and Related Issues Antialiasing and Related Issues OUTLINE: Antialiasing Prefiltering, Supersampling, Stochastic Sampling Rastering and Reconstruction Gamma Correction Antialiasing Methods To reduce aliasing, either: 1.

More information

ECE 484 Digital Image Processing Lec 09 - Image Resampling

ECE 484 Digital Image Processing Lec 09 - Image Resampling ECE 484 Digital Image Processing Lec 09 - Image Resampling Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu slides created with WPS Office Linux

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase Fourier Transform Fourier Transform Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase 2 1 3 3 3 1 sin 3 3 1 3 sin 3 1 sin 5 5 1 3 sin

More information

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical Engineering

More information

06: Thinking in Frequencies. CS 5840: Computer Vision Instructor: Jonathan Ventura

06: Thinking in Frequencies. CS 5840: Computer Vision Instructor: Jonathan Ventura 06: Thinking in Frequencies CS 5840: Computer Vision Instructor: Jonathan Ventura Decomposition of Functions Taylor series: Sum of polynomials f(x) =f(a)+f 0 (a)(x a)+ f 00 (a) 2! (x a) 2 + f 000 (a) (x

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

6 Sampling. Sampling. The principles of sampling, especially the benefits of coherent sampling

6 Sampling. Sampling. The principles of sampling, especially the benefits of coherent sampling Note: Printed Manuals 6 are not in Color Objectives This chapter explains the following: The principles of sampling, especially the benefits of coherent sampling How to apply sampling principles in a test

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Computer Vision, Lecture 3

Computer Vision, Lecture 3 Computer Vision, Lecture 3 Professor Hager http://www.cs.jhu.edu/~hager /4/200 CS 46, Copyright G.D. Hager Outline for Today Image noise Filtering by Convolution Properties of Convolution /4/200 CS 46,

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2015/16 Aula 3-29 de Setembro

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2015/16 Aula 3-29 de Setembro Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2015/16 Aula 3-29 de Setembro Aliasing Example fsig=101khz fsig=899 khz All sampled signals are equal! fsig=1101 khz 2 How to

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

Image Scaling. This image is too big to fit on the screen. How can we reduce it? How to generate a halfsized

Image Scaling. This image is too big to fit on the screen. How can we reduce it? How to generate a halfsized Resampling Image Scaling This image is too big to fit on the screen. How can we reduce it? How to generate a halfsized version? Image sub-sampling 1/8 1/4 Throw away every other row and column to create

More information

Lecture Schedule: Week Date Lecture Title

Lecture Schedule: Week Date Lecture Title http://elec3004.org Sampling & More 2014 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date Lecture Title 1 2-Mar Introduction 3-Mar

More information

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN DISCRETE FOURIER TRANSFORM AND FILTER DESIGN N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 03 Spectrum of a Square Wave 2 Results of Some Filters 3 Notation 4 x[n]

More information

+ a(t) exp( 2πif t)dt (1.1) In order to go back to the independent variable t, we define the inverse transform as: + A(f) exp(2πif t)df (1.

+ a(t) exp( 2πif t)dt (1.1) In order to go back to the independent variable t, we define the inverse transform as: + A(f) exp(2πif t)df (1. Chapter Fourier analysis In this chapter we review some basic results from signal analysis and processing. We shall not go into detail and assume the reader has some basic background in signal analysis

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 1 FIR as a

More information

Digital Signal Processing for Audio Applications

Digital Signal Processing for Audio Applications Digital Signal Processing for Audio Applications Volime 1 - Formulae Third Edition Anton Kamenov Digital Signal Processing for Audio Applications Third Edition Volume 1 Formulae Anton Kamenov 2011 Anton

More information

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer.

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer. Sampling of Continuous-Time Signals Reference chapter 4 in Oppenheim and Schafer. Periodic Sampling of Continuous Signals T = sampling period fs = sampling frequency when expressing frequencies in radians

More information

Fourier Transform Pairs

Fourier Transform Pairs CHAPTER Fourier Transform Pairs For every time domain waveform there is a corresponding frequency domain waveform, and vice versa. For example, a rectangular pulse in the time domain coincides with a sinc

More information

Filter Banks I. Prof. Dr. Gerald Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany. Fraunhofer IDMT

Filter Banks I. Prof. Dr. Gerald Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany. Fraunhofer IDMT Filter Banks I Prof. Dr. Gerald Schuller Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany 1 Structure of perceptual Audio Coders Encoder Decoder 2 Filter Banks essential element of most

More information

TRANSFORMS / WAVELETS

TRANSFORMS / WAVELETS RANSFORMS / WAVELES ransform Analysis Signal processing using a transform analysis for calculations is a technique used to simplify or accelerate problem solution. For example, instead of dividing two

More information

Image Processing. Image Processing. What is an Image? Image Resolution. Overview. Sources of Error. Filtering Blur Detect edges

Image Processing. Image Processing. What is an Image? Image Resolution. Overview. Sources of Error. Filtering Blur Detect edges Thomas Funkhouser Princeton University COS 46, Spring 004 Quantization Random dither Ordered dither Floyd-Steinberg dither Pixel operations Add random noise Add luminance Add contrast Add saturation ing

More information

PHYS 352. FFT Convolution. More Advanced Digital Signal Processing Techniques

PHYS 352. FFT Convolution. More Advanced Digital Signal Processing Techniques PHYS 352 More Advanced Digital Signal Processing Techniques FFT Convolution take a chunk of your signal (say N=128 samples) apply FFT to it multiply the frequency domain signal by your desired transfer

More information

CT111 Introduction to Communication Systems Lecture 9: Digital Communications

CT111 Introduction to Communication Systems Lecture 9: Digital Communications CT111 Introduction to Communication Systems Lecture 9: Digital Communications Yash M. Vasavada Associate Professor, DA-IICT, Gandhinagar 31st January 2018 Yash M. Vasavada (DA-IICT) CT111: Intro to Comm.

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Systems Prof. Mark Fowler Note Set #19 C-T Systems: Frequency-Domain Analysis of Systems Reading Assignment: Section 5.2 of Kamen and Heck 1/17 Course Flow Diagram The arrows here show

More information

Overview. M. Xiao CommTh/EES/KTH. Wednesday, Feb. 17, :00-12:00, B23

Overview. M. Xiao CommTh/EES/KTH. Wednesday, Feb. 17, :00-12:00, B23 : Advanced Digital Communications (EQ2410) 1 Wednesday, Feb. 17, 2016 10:00-12:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 1 Overview Lecture 7 Characteristics of wireless

More information

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM Department of Electrical and Computer Engineering Missouri University of Science and Technology Page 1 Table of Contents Introduction...Page

More information

Choosing the Best ADC Architecture for Your Application Part 3:

Choosing the Best ADC Architecture for Your Application Part 3: Choosing the Best ADC Architecture for Your Application Part 3: Hello, my name is Luis Chioye, I am an Applications Engineer with the Texas Instruments Precision Data Converters team. And I am Ryan Callaway,

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu Concordia University Discrete-Time Signal Processing Lab Manual (ELEC442) Course Instructor: Dr. Wei-Ping Zhu Fall 2012 Lab 1: Linear Constant Coefficient Difference Equations (LCCDE) Objective In this

More information

Data Acquisition Systems. Signal DAQ System The Answer?

Data Acquisition Systems. Signal DAQ System The Answer? Outline Analysis of Waveforms and Transforms How many Samples to Take Aliasing Negative Spectrum Frequency Resolution Synchronizing Sampling Non-repetitive Waveforms Picket Fencing A Sampled Data System

More information

System Identification & Parameter Estimation

System Identification & Parameter Estimation System Identification & Parameter Estimation Wb2301: SIPE lecture 4 Perturbation signal design Alfred C. Schouten, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE 3/9/2010 Delft University of Technology

More information

Image Sampling. Moire patterns. - Source: F. Durand

Image Sampling. Moire patterns. -  Source: F. Durand Image Sampling Moire patterns Source: F. Durand - http://www.sandlotscience.com/moire/circular_3_moire.htm Any questions on project 1? For extra credits, attach before/after images how your extra feature

More information

Frequency Domain Enhancement

Frequency Domain Enhancement Tutorial Report Frequency Domain Enhancement Page 1 of 21 Frequency Domain Enhancement ESE 558 - DIGITAL IMAGE PROCESSING Tutorial Report Instructor: Murali Subbarao Written by: Tutorial Report Frequency

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 10 Feb 14 th, 2019 Pranav Mantini Slides from Dr. Shishir K Shah and S. Narasimhan Time and Frequency example : g(t) = sin(2π f t) + (1/3)sin(2π (3f) t)

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Image Processing 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Image Processing 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Image Processing 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור What is an image? An image is a discrete array of samples representing a continuous

More information

Introduction to Wavelets. For sensor data processing

Introduction to Wavelets. For sensor data processing Introduction to Wavelets For sensor data processing List of topics Why transform? Why wavelets? Wavelets like basis components. Wavelets examples. Fast wavelet transform. Wavelets like filter. Wavelets

More information

Part 2: Fourier transforms. Key to understanding NMR, X-ray crystallography, and all forms of microscopy

Part 2: Fourier transforms. Key to understanding NMR, X-ray crystallography, and all forms of microscopy Part 2: Fourier transforms Key to understanding NMR, X-ray crystallography, and all forms of microscopy Sine waves y(t) = A sin(wt + p) y(x) = A sin(kx + p) To completely specify a sine wave, you need

More information

ENGR 210 Lab 12: Sampling and Aliasing

ENGR 210 Lab 12: Sampling and Aliasing ENGR 21 Lab 12: Sampling and Aliasing In the previous lab you examined how A/D converters actually work. In this lab we will consider some of the consequences of how fast you sample and of the signal processing

More information

The Fast Fourier Transform

The Fast Fourier Transform The Fast Fourier Transform Basic FFT Stuff That s s Good to Know Dave Typinski, Radio Jove Meeting, July 2, 2014, NRAO Green Bank Ever wonder how an SDR-14 or Dongle produces the spectra that it does?

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

Digital Image Processing

Digital Image Processing In the Name of Allah Digital Image Processing Introduction to Wavelets Hamid R. Rabiee Fall 2015 Outline 2 Why transform? Why wavelets? Wavelets like basis components. Wavelets examples. Fast wavelet transform.

More information

Transforms and Frequency Filtering

Transforms and Frequency Filtering Transforms and Frequency Filtering Khalid Niazi Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading Instructions Chapter 4: Image Enhancement in the Frequency

More information

Pulse Code Modulation (PCM)

Pulse Code Modulation (PCM) Project Title: e-laboratories for Physics and Engineering Education Tempus Project: contract # 517102-TEMPUS-1-2011-1-SE-TEMPUS-JPCR 1. Experiment Category: Electrical Engineering >> Communications 2.

More information

Chapter 6 CONTINUOUS-TIME, IMPULSE-MODULATED, AND DISCRETE-TIME SIGNALS. 6.6 Sampling Theorem 6.7 Aliasing 6.8 Interrelations

Chapter 6 CONTINUOUS-TIME, IMPULSE-MODULATED, AND DISCRETE-TIME SIGNALS. 6.6 Sampling Theorem 6.7 Aliasing 6.8 Interrelations Chapter 6 CONTINUOUS-TIME, IMPULSE-MODULATED, AND DISCRETE-TIME SIGNALS 6.6 Sampling Theorem 6.7 Aliasing 6.8 Interrelations Copyright c 2005- Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

More information

Image Processing. What is an image? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Converting to digital form. Sampling and Reconstruction.

Image Processing. What is an image? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Converting to digital form. Sampling and Reconstruction. Amplitude 5/1/008 What is an image? An image is a discrete array of samples representing a continuous D function קורס גרפיקה ממוחשבת 008 סמסטר ב' Continuous function Discrete samples 1 חלק מהשקפים מעובדים

More information

Moving from continuous- to discrete-time

Moving from continuous- to discrete-time Moving from continuous- to discrete-time Sampling ideas Uniform, periodic sampling rate, e.g. CDs at 44.1KHz First we will need to consider periodic signals in order to appreciate how to interpret discrete-time

More information

CS4495/6495 Introduction to Computer Vision. 2C-L3 Aliasing

CS4495/6495 Introduction to Computer Vision. 2C-L3 Aliasing CS4495/6495 Introduction to Computer Vision 2C-L3 Aliasing Recall: Fourier Pairs (from Szeliski) Fourier Transform Sampling Pairs FT of an impulse train is an impulse train Sampling and Aliasing Sampling

More information

Notes on Fourier transforms

Notes on Fourier transforms Fourier Transforms 1 Notes on Fourier transforms The Fourier transform is something we all toss around like we understand it, but it is often discussed in an offhand way that leads to confusion for those

More information

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 2017 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date

More information

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011 Islamic University of Gaza Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#4 Sampling and Quantization OBJECTIVES: When you have completed this assignment,

More information

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music)

Topic 2. Signal Processing Review. (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Topic 2 Signal Processing Review (Some slides are adapted from Bryan Pardo s course slides on Machine Perception of Music) Recording Sound Mechanical Vibration Pressure Waves Motion->Voltage Transducer

More information

Prof. Feng Liu. Fall /04/2018

Prof. Feng Liu. Fall /04/2018 Prof. Feng Liu Fall 2018 http://www.cs.pdx.edu/~fliu/courses/cs447/ 10/04/2018 1 Last Time Image file formats Color quantization 2 Today Dithering Signal Processing Homework 1 due today in class Homework

More information

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37 INF4420 Discrete time signals Jørgen Andreas Michaelsen Spring 2013 1 / 37 Outline Impulse sampling z-transform Frequency response Stability Spring 2013 Discrete time signals 2 2 / 37 Introduction More

More information

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t)

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t) Fourier Transforms Fourier s idea that periodic functions can be represented by an infinite series of sines and cosines with discrete frequencies which are integer multiples of a fundamental frequency

More information

Convolution Pyramids. Zeev Farbman, Raanan Fattal and Dani Lischinski SIGGRAPH Asia Conference (2011) Julian Steil. Prof. Dr.

Convolution Pyramids. Zeev Farbman, Raanan Fattal and Dani Lischinski SIGGRAPH Asia Conference (2011) Julian Steil. Prof. Dr. Zeev Farbman, Raanan Fattal and Dani Lischinski SIGGRAPH Asia Conference (2011) presented by: Julian Steil supervisor: Prof. Dr. Joachim Weickert Fig. 1.1: Gradient integration example Seminar - Milestones

More information

Analysis and design of filters for differentiation

Analysis and design of filters for differentiation Differential filters Analysis and design of filters for differentiation John C. Bancroft and Hugh D. Geiger SUMMARY Differential equations are an integral part of seismic processing. In the discrete computer

More information

Harmonic Analysis. Purpose of Time Series Analysis. What Does Each Harmonic Mean? Part 3: Time Series I

Harmonic Analysis. Purpose of Time Series Analysis. What Does Each Harmonic Mean? Part 3: Time Series I Part 3: Time Series I Harmonic Analysis Spectrum Analysis Autocorrelation Function Degree of Freedom Data Window (Figure from Panofsky and Brier 1968) Significance Tests Harmonic Analysis Harmonic analysis

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to increase the sampling rate by an integer

More information

Application of Fourier Transform in Signal Processing

Application of Fourier Transform in Signal Processing 1 Application of Fourier Transform in Signal Processing Lina Sun,Derong You,Daoyun Qi Information Engineering College, Yantai University of Technology, Shandong, China Abstract: Fourier transform is a

More information

Image Resizing. Reminder no class next Tuesday, but your problem set is due. 9/19/08 Comp 665 Image Resizing 1

Image Resizing. Reminder no class next Tuesday, but your problem set is due. 9/19/08 Comp 665 Image Resizing 1 Image Resizing Narbonic Shaenon Garrity http://www.narbonic.com Reminder no class next Tuesday, but your problem set is due. 9/19/08 Comp 665 Image Resizing 1 Magnifica/on = Reconstruc/on Conceptually

More information

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1).

Chapter 5 Window Functions. periodic with a period of N (number of samples). This is observed in table (3.1). Chapter 5 Window Functions 5.1 Introduction As discussed in section (3.7.5), the DTFS assumes that the input waveform is periodic with a period of N (number of samples). This is observed in table (3.1).

More information

Chapter 7. Introduction. Analog Signal and Discrete Time Series. Sampling, Digital Devices, and Data Acquisition

Chapter 7. Introduction. Analog Signal and Discrete Time Series. Sampling, Digital Devices, and Data Acquisition Chapter 7 Sampling, Digital Devices, and Data Acquisition Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Introduction Integrating analog electrical transducers with

More information

Sampling and Pulse Trains

Sampling and Pulse Trains Sampling and Pulse Trains Sampling and interpolation Practical interpolation Pulse trains Analog multiplexing Sampling Theorem Sampling theorem: a signal g(t) with bandwidth B can be reconstructed exactly

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Filter Design Circularly symmetric 2-D low-pass filter Pass-band radial frequency: ω p Stop-band radial frequency: ω s 1 δ p Pass-band tolerances: δ

More information

ANALOGUE AND DIGITAL COMMUNICATION

ANALOGUE AND DIGITAL COMMUNICATION ANALOGUE AND DIGITAL COMMUNICATION Syed M. Zafi S. Shah Umair M. Qureshi Lecture xxx: Analogue to Digital Conversion Topics Pulse Modulation Systems Advantages & Disadvantages Pulse Code Modulation Pulse

More information

Fourier Signal Analysis

Fourier Signal Analysis Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

FFT analysis in practice

FFT analysis in practice FFT analysis in practice Perception & Multimedia Computing Lecture 13 Rebecca Fiebrink Lecturer, Department of Computing Goldsmiths, University of London 1 Last Week Review of complex numbers: rectangular

More information

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido The Discrete Fourier Transform Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido CCC-INAOE Autumn 2015 The Discrete Fourier Transform Fourier analysis is a family of mathematical

More information

Discrete-Time Signal Processing (DTSP) v14

Discrete-Time Signal Processing (DTSP) v14 EE 392 Laboratory 5-1 Discrete-Time Signal Processing (DTSP) v14 Safety - Voltages used here are less than 15 V and normally do not present a risk of shock. Objective: To study impulse response and the

More information

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999 Wavelet Transform From C. Valens article, A Really Friendly Guide to Wavelets, 1999 Fourier theory: a signal can be expressed as the sum of a series of sines and cosines. The big disadvantage of a Fourier

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

Experiment 8: Sampling

Experiment 8: Sampling Prepared By: 1 Experiment 8: Sampling Objective The objective of this Lab is to understand concepts and observe the effects of periodically sampling a continuous signal at different sampling rates, changing

More information

ECEGR Lab #8: Introduction to Simulink

ECEGR Lab #8: Introduction to Simulink Page 1 ECEGR 317 - Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example,

More information

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 ECE 556 BASICS OF DIGITAL SPEECH PROCESSING Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 Analog Sound to Digital Sound Characteristics of Sound Amplitude Wavelength (w) Frequency ( ) Timbre

More information

Chapter 2: Digitization of Sound

Chapter 2: Digitization of Sound Chapter 2: Digitization of Sound Acoustics pressure waves are converted to electrical signals by use of a microphone. The output signal from the microphone is an analog signal, i.e., a continuous-valued

More information

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp17-21)

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp17-21) Ambiguity Function Computation Using Over-Sampled DFT Filter Banks ENNETH P. BENTZ The Aerospace Corporation 5049 Conference Center Dr. Chantilly, VA, USA 90245-469 Abstract: - This paper will demonstrate

More information

System analysis and signal processing

System analysis and signal processing System analysis and signal processing with emphasis on the use of MATLAB PHILIP DENBIGH University of Sussex ADDISON-WESLEY Harlow, England Reading, Massachusetts Menlow Park, California New York Don Mills,

More information

DFT: Discrete Fourier Transform & Linear Signal Processing

DFT: Discrete Fourier Transform & Linear Signal Processing DFT: Discrete Fourier Transform & Linear Signal Processing 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Textbooks... 3 Recommended

More information

DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015

DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015 DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015 Fourier Transform Properties Claudia Feregrino-Uribe & Alicia Morales Reyes Original material: Rene Cumplido "The Scientist and Engineer's Guide to Digital

More information

Signal Characteristics

Signal Characteristics Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium

More information