A learning, biologically-inspired sound localization model

Size: px
Start display at page:

Download "A learning, biologically-inspired sound localization model"

Transcription

1 A learning, biologically-inspired sound localization model Elena Grassi Neural Systems Lab Institute for Systems Research University of Maryland ITR meeting Oct 12/00 1

2 Overview HRTF s cues for sound localization. Details of the model. Simulation results. Applications: binaural head, cochlear chips. Bonus!: HRTF setup (measurement in bats). ITR meeting Oct 12/00 2

3 Credits Dan Rapczynski, Clifford Knoll, Mete Erturk (EE) Murat Aytekin, Manjit Sahota (Psych) Shihab A. Shamma (EE, ISR), P.S. Krishnaprasad (EE, ISR), Cynthia Moss (Psych., ISR), Terry Takahashi (Biol., U. of Oregon) Support: NSF LIS, NIH, ONR MURI 97, 2000 Neuromorphic Eng. Workshop. ITR meeting Oct 12/00 3

4 Sound localization cues extracted from the HRTF ILDs: Interaural Level Differences, more significant at high frequencies. ITDs: Interaural Time Differences, unambiguous at low frequency. Monaural spectral cues, mostly at high frequency, are a good indicative of elevation. In the model we use their biological equivalent. ITR meeting Oct 12/00 4

5 The system of coordinates Microsoft PowerPoint Presentation Double Polar system (radius and 2 angles). One angle specifies cones on the inter-aural axis, the other, cones on the vertical axis. Idea: to have some approximate invariance of binaural cues, while keeping spatial sampling approximately even. ITR meeting Oct 12/00 5

6 Double polar angles Spherical angles n a tio v le E n a tio v le E Lateralization Azimuth ITR meeting Oct 12/00 6

7 Model inspired on the barn owl: Why? Barn owls can localize sound very accurately. Anatomical structures related to sound localization are hyper-developed. ICc ICx OT ICx: topographic map (Pictures courtesy of T. Takahashi) ITR meeting Oct 12/00 7

8 Model Characteristics Signals are split into frequency channels by the cochlear filters. Tonotopical (frequency) organization. Separate pathways for ILD and ITD. Supervised, Hebbian-like training and lateral inhibition within each frequency channel. selected location: others: w = g(1 O ) w ij ij = d O j I i j I i Other models: Lim and Duda 94, Chung,Carlile, and Leong 00, ITR meeting Oct 12/00 8

9 Barn owl wiring ICx: Space Map Inferior Colliculus Left Right Cor e Lateral Shell Medial Shell Core (courtesy of David Euston, U. of Oregon) VLVp VLVa VLVa VLVp LLv SO NA NA Ear Ear NM NL NL NM ITR meeting Oct 12/00 9

10 Model diagram HRTF (Right) Cochlear Filters (Left) ½ Rectifier Integrator ITD (NM/NL) stereausis sound LS ICc ICx HRTF (Left) Cochlear Filters (Right) ½ Rectifier Integrator ILD (NA/VLVp) E ILDi = log10 E L R Frequency tuned ABL ITR meeting Oct 12/00 10

11 Cochlear filters Magnitude Response Phase Response Silicon Cochlea s Measured Frequency Response The sharp decay of the cochlear filters on the high frequency end is associated with a quick phase change. ITR meeting Oct 12/00 11

12 VLVp: ILD encoding VLVp: % Neural activation (frequency tuned) Approximation Left VLVp Right VLVp 1 ILD ILD ILD ITR meeting Oct 12/00 12

13 ILD and ITD encoding: example 4 2 example of ILD ILD(f1)= 1 ILDi = log10 E E L R D IL 0-2 L(f1)= [0,0,0,0,0,0,0,0,0,0,0] R(f1)= [1,1,0,0,0,0,0,0,0,0,0] frequency a l n go a d i ro n tf e e a c p l is example of stereausis image frequency f1 ITD(f1)= Microsoft PowerPoint Presentation ITR meeting Oct 12/00 13

14 ITD pathway: Stereausis (spatial cross-correlation between the left and right cochlear outputs) ITR meeting Oct 12/00 14

15 Stereausis and ILD: examples for a human-like head -45 deg (left) 45 deg (right) 0 deg center deg (left) n c e D if e re e e v l L deg (center) ILD, from KEMAR HRTFS -5 0 deg (center) -10 ITR meeting Oct 12/ frequency channel

16 The Role of ABL Average Binaural Level (ABL) is used to modulate the signals in each channel according to their energy. During training, weights corresponding to low energy channels are not modified. The output of ICc is modulated by ABL, producing a smaller output for those channels with less energy. ITR meeting Oct 12/00 16

17 Barn owl simulation results 100 spatial distribution of stimuli Seven sound stimuli were filtered with HRTFs of 69 different space locations. g ] e [d n o a e v t i l azimuth [deg] Input synapses (4761) to ICc units, covering 69 locations, were trained with stimuli presented at random iterations. Performance was tested with several stimuli not contained in the training set. ITR meeting Oct 12/00 17

18 Simulation Results (stimuli not in training set) voice 3 tones (3, 4.5, and 6 KHz) t n i u t n i u noise 2 tones (3.5 and 7 KHz) t n i u t n i u position position ITR meeting Oct 12/00 Space location 18

19 Binaural mannequin head Objective: azimuth sound localization based on biological principles. We are currently working on elevation localization too. 32- channels cochlear chips decompose the sound entering 2 microphones inserted in the model ears. ITR meeting Oct 12/00 19

20 Binaural mannequin head: pictures Real-time data: (left) cochleograms; (middle) channel energy vs. frequency; (right,above) streausis; (right, below) result of Jefress model. Binaural head with motor. ITR meeting Oct 12/00 20

21 The robot platform for localization and recognition Binaural stimulus System Block Diagram Head Left cochlea Right cochlea Robot PC (Win98) MATLAB ITR meeting Oct 12/00 21

22 Silicon Cochlea: measured cochleogram of 300 Hz. ITR meeting Oct 12/00 22

23 Bonus: bat HRTF measurement frame Ceiling R 97 mm 2150 mm Laser #1 mic1 mic2 Laser #2 Speaker signals Laser #4 Laser #2 Data Acquisition System RCEMIT Floor Dial gauge/compass HRTF frame at C. Moss batlab ITR meeting Oct 12/00 23

24 HRTF frame: picture HRTF frame in the sound room ITR meeting Oct 12/00 24

25 Preserved bat: picture Calibration by laser beams (red spots on bat s ears) ITR meeting Oct 12/00 25

26 Future work The implemented sound localization static map pairs binaural/monaural cues with space locations. This map will be embedded in a dynamic system, where timing information is used to discriminate and track sound stimuli. Onset and echo cancellation. Dynamic tracking: Tracking of a sound object. Use of head movements to increase precision of sound localization. ITR meeting Oct 12/00 26

I R UNDERGRADUATE REPORT. Stereausis: A Binaural Processing Model. by Samuel Jiawei Ng Advisor: P.S. Krishnaprasad UG

I R UNDERGRADUATE REPORT. Stereausis: A Binaural Processing Model. by Samuel Jiawei Ng Advisor: P.S. Krishnaprasad UG UNDERGRADUATE REPORT Stereausis: A Binaural Processing Model by Samuel Jiawei Ng Advisor: P.S. Krishnaprasad UG 2001-6 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops, applies and teaches advanced methodologies

More information

Binaural hearing. Prof. Dan Tollin on the Hearing Throne, Oldenburg Hearing Garden

Binaural hearing. Prof. Dan Tollin on the Hearing Throne, Oldenburg Hearing Garden Binaural hearing Prof. Dan Tollin on the Hearing Throne, Oldenburg Hearing Garden Outline of the lecture Cues for sound localization Duplex theory Spectral cues do demo Behavioral demonstrations of pinna

More information

PERFORMANCE COMPARISON BETWEEN STEREAUSIS AND INCOHERENT WIDEBAND MUSIC FOR LOCALIZATION OF GROUND VEHICLES ABSTRACT

PERFORMANCE COMPARISON BETWEEN STEREAUSIS AND INCOHERENT WIDEBAND MUSIC FOR LOCALIZATION OF GROUND VEHICLES ABSTRACT Approved for public release; distribution is unlimited. PERFORMANCE COMPARISON BETWEEN STEREAUSIS AND INCOHERENT WIDEBAND MUSIC FOR LOCALIZATION OF GROUND VEHICLES September 1999 Tien Pham U.S. Army Research

More information

Binaural Sound Localization Systems Based on Neural Approaches. Nick Rossenbach June 17, 2016

Binaural Sound Localization Systems Based on Neural Approaches. Nick Rossenbach June 17, 2016 Binaural Sound Localization Systems Based on Neural Approaches Nick Rossenbach June 17, 2016 Introduction Barn Owl as Biological Example Neural Audio Processing Jeffress model Spence & Pearson Artifical

More information

A Silicon Model Of Auditory Localization

A Silicon Model Of Auditory Localization Communicated by John Wyatt A Silicon Model Of Auditory Localization John Lazzaro Carver A. Mead Department of Computer Science, California Institute of Technology, MS 256-80, Pasadena, CA 91125, USA The

More information

Binaural Hearing. Reading: Yost Ch. 12

Binaural Hearing. Reading: Yost Ch. 12 Binaural Hearing Reading: Yost Ch. 12 Binaural Advantages Sounds in our environment are usually complex, and occur either simultaneously or close together in time. Studies have shown that the ability to

More information

Acoustics Research Institute

Acoustics Research Institute Austrian Academy of Sciences Acoustics Research Institute Spatial SpatialHearing: Hearing: Single SingleSound SoundSource Sourcein infree FreeField Field Piotr PiotrMajdak Majdak&&Bernhard BernhardLaback

More information

Computational Perception. Sound localization 2

Computational Perception. Sound localization 2 Computational Perception 15-485/785 January 22, 2008 Sound localization 2 Last lecture sound propagation: reflection, diffraction, shadowing sound intensity (db) defining computational problems sound lateralization

More information

Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma

Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma Spectro-Temporal Methods in Primary Auditory Cortex David Klein Didier Depireux Jonathan Simon Shihab Shamma & Department of Electrical Engineering Supported in part by a MURI grant from the Office of

More information

Sound Source Localization using HRTF database

Sound Source Localization using HRTF database ICCAS June -, KINTEX, Gyeonggi-Do, Korea Sound Source Localization using HRTF database Sungmok Hwang*, Youngjin Park and Younsik Park * Center for Noise and Vibration Control, Dept. of Mech. Eng., KAIST,

More information

Computational Perception /785

Computational Perception /785 Computational Perception 15-485/785 Assignment 1 Sound Localization due: Thursday, Jan. 31 Introduction This assignment focuses on sound localization. You will develop Matlab programs that synthesize sounds

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 4: 7 Feb 2008. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum,

More information

EE1.el3 (EEE1023): Electronics III. Acoustics lecture 20 Sound localisation. Dr Philip Jackson.

EE1.el3 (EEE1023): Electronics III. Acoustics lecture 20 Sound localisation. Dr Philip Jackson. EE1.el3 (EEE1023): Electronics III Acoustics lecture 20 Sound localisation Dr Philip Jackson www.ee.surrey.ac.uk/teaching/courses/ee1.el3 Sound localisation Objectives: calculate frequency response of

More information

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner.

Perception of pitch. Definitions. Why is pitch important? BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb A. Faulkner. Perception of pitch BSc Audiology/MSc SHS Psychoacoustics wk 5: 12 Feb 2009. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence

More information

Listening with Headphones

Listening with Headphones Listening with Headphones Main Types of Errors Front-back reversals Angle error Some Experimental Results Most front-back errors are front-to-back Substantial individual differences Most evident in elevation

More information

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner.

Perception of pitch. Importance of pitch: 2. mother hemp horse. scold. Definitions. Why is pitch important? AUDL4007: 11 Feb A. Faulkner. Perception of pitch AUDL4007: 11 Feb 2010. A. Faulkner. See Moore, BCJ Introduction to the Psychology of Hearing, Chapter 5. Or Plack CJ The Sense of Hearing Lawrence Erlbaum, 2005 Chapter 7 1 Definitions

More information

Monaural and Binaural Speech Separation

Monaural and Binaural Speech Separation Monaural and Binaural Speech Separation DeLiang Wang Perception & Neurodynamics Lab The Ohio State University Outline of presentation Introduction CASA approach to sound separation Ideal binary mask as

More information

The psychoacoustics of reverberation

The psychoacoustics of reverberation The psychoacoustics of reverberation Steven van de Par Steven.van.de.Par@uni-oldenburg.de July 19, 2016 Thanks to Julian Grosse and Andreas Häußler 2016 AES International Conference on Sound Field Control

More information

An Auditory Localization and Coordinate Transform Chip

An Auditory Localization and Coordinate Transform Chip An Auditory Localization and Coordinate Transform Chip Timothy K. Horiuchi timmer@cns.caltech.edu Computation and Neural Systems Program California Institute of Technology Pasadena, CA 91125 Abstract The

More information

A VLSI-Based Model of Azimuthal Echolocation in the Big Brown Bat

A VLSI-Based Model of Azimuthal Echolocation in the Big Brown Bat Autonomous Robots 11, 241 247, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A VLSI-Based Model of Azimuthal Echolocation in the Big Brown Bat TIMOTHY HORIUCHI Electrical and

More information

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. 3D and Virtual Sound. Paris Smaragdis. paris.cs.illinois.

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. 3D and Virtual Sound. Paris Smaragdis. paris.cs.illinois. UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab 3D and Virtual Sound Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Overview Human perception of sound and space ITD, IID,

More information

3D sound image control by individualized parametric head-related transfer functions

3D sound image control by individualized parametric head-related transfer functions D sound image control by individualized parametric head-related transfer functions Kazuhiro IIDA 1 and Yohji ISHII 1 Chiba Institute of Technology 2-17-1 Tsudanuma, Narashino, Chiba 275-001 JAPAN ABSTRACT

More information

HRTF adaptation and pattern learning

HRTF adaptation and pattern learning HRTF adaptation and pattern learning FLORIAN KLEIN * AND STEPHAN WERNER Electronic Media Technology Lab, Institute for Media Technology, Technische Universität Ilmenau, D-98693 Ilmenau, Germany The human

More information

Spatial Audio & The Vestibular System!

Spatial Audio & The Vestibular System! ! Spatial Audio & The Vestibular System! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 13! stanford.edu/class/ee267/!! Updates! lab this Friday will be released as a video! TAs

More information

Evaluation of a new stereophonic reproduction method with moving sweet spot using a binaural localization model

Evaluation of a new stereophonic reproduction method with moving sweet spot using a binaural localization model Evaluation of a new stereophonic reproduction method with moving sweet spot using a binaural localization model Sebastian Merchel and Stephan Groth Chair of Communication Acoustics, Dresden University

More information

BIOLOGICALLY INSPIRED BINAURAL ANALOGUE SIGNAL PROCESSING

BIOLOGICALLY INSPIRED BINAURAL ANALOGUE SIGNAL PROCESSING Brain Inspired Cognitive Systems August 29 September 1, 2004 University of Stirling, Scotland, UK BIOLOGICALLY INSPIRED BINAURAL ANALOGUE SIGNAL PROCESSING Natasha Chia and Steve Collins University of

More information

The Human Auditory System

The Human Auditory System medial geniculate nucleus primary auditory cortex inferior colliculus cochlea superior olivary complex The Human Auditory System Prominent Features of Binaural Hearing Localization Formation of positions

More information

A triangulation method for determining the perceptual center of the head for auditory stimuli

A triangulation method for determining the perceptual center of the head for auditory stimuli A triangulation method for determining the perceptual center of the head for auditory stimuli PACS REFERENCE: 43.66.Qp Brungart, Douglas 1 ; Neelon, Michael 2 ; Kordik, Alexander 3 ; Simpson, Brian 4 1

More information

INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR PROPOSING A STANDARDISED TESTING ENVIRONMENT FOR BINAURAL SYSTEMS

INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR PROPOSING A STANDARDISED TESTING ENVIRONMENT FOR BINAURAL SYSTEMS 20-21 September 2018, BULGARIA 1 Proceedings of the International Conference on Information Technologies (InfoTech-2018) 20-21 September 2018, Bulgaria INVESTIGATING BINAURAL LOCALISATION ABILITIES FOR

More information

Enhancing 3D Audio Using Blind Bandwidth Extension

Enhancing 3D Audio Using Blind Bandwidth Extension Enhancing 3D Audio Using Blind Bandwidth Extension (PREPRINT) Tim Habigt, Marko Ðurković, Martin Rothbucher, and Klaus Diepold Institute for Data Processing, Technische Universität München, 829 München,

More information

A CLOSER LOOK AT THE REPRESENTATION OF INTERAURAL DIFFERENCES IN A BINAURAL MODEL

A CLOSER LOOK AT THE REPRESENTATION OF INTERAURAL DIFFERENCES IN A BINAURAL MODEL 9th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 7 A CLOSER LOOK AT THE REPRESENTATION OF INTERAURAL DIFFERENCES IN A BINAURAL MODEL PACS: PACS:. Pn Nicolas Le Goff ; Armin Kohlrausch ; Jeroen

More information

Auditory System For a Mobile Robot

Auditory System For a Mobile Robot Auditory System For a Mobile Robot PhD Thesis Jean-Marc Valin Department of Electrical Engineering and Computer Engineering Université de Sherbrooke, Québec, Canada Jean-Marc.Valin@USherbrooke.ca Motivations

More information

Sound Source Localization in Median Plane using Artificial Ear

Sound Source Localization in Median Plane using Artificial Ear International Conference on Control, Automation and Systems 28 Oct. 14-17, 28 in COEX, Seoul, Korea Sound Source Localization in Median Plane using Artificial Ear Sangmoon Lee 1, Sungmok Hwang 2, Youngjin

More information

Envelopment and Small Room Acoustics

Envelopment and Small Room Acoustics Envelopment and Small Room Acoustics David Griesinger Lexicon 3 Oak Park Bedford, MA 01730 Copyright 9/21/00 by David Griesinger Preview of results Loudness isn t everything! At least two additional perceptions:

More information

Imagine the cochlea unrolled

Imagine the cochlea unrolled 2 2 1 1 1 1 1 Cochlea & Auditory Nerve: obligatory stages of auditory processing Think of the auditory periphery as a processor of signals 2 2 1 1 1 1 1 Imagine the cochlea unrolled Basilar membrane motion

More information

Effects of Reverberation on Pitch, Onset/Offset, and Binaural Cues

Effects of Reverberation on Pitch, Onset/Offset, and Binaural Cues Effects of Reverberation on Pitch, Onset/Offset, and Binaural Cues DeLiang Wang Perception & Neurodynamics Lab The Ohio State University Outline of presentation Introduction Human performance Reverberation

More information

THE MATLAB IMPLEMENTATION OF BINAURAL PROCESSING MODEL SIMULATING LATERAL POSITION OF TONES WITH INTERAURAL TIME DIFFERENCES

THE MATLAB IMPLEMENTATION OF BINAURAL PROCESSING MODEL SIMULATING LATERAL POSITION OF TONES WITH INTERAURAL TIME DIFFERENCES THE MATLAB IMPLEMENTATION OF BINAURAL PROCESSING MODEL SIMULATING LATERAL POSITION OF TONES WITH INTERAURAL TIME DIFFERENCES J. Bouše, V. Vencovský Department of Radioelectronics, Faculty of Electrical

More information

Convention Paper 9870 Presented at the 143 rd Convention 2017 October 18 21, New York, NY, USA

Convention Paper 9870 Presented at the 143 rd Convention 2017 October 18 21, New York, NY, USA Audio Engineering Society Convention Paper 987 Presented at the 143 rd Convention 217 October 18 21, New York, NY, USA This convention paper was selected based on a submitted abstract and 7-word precis

More information

Neuronal correlates of pitch in the Inferior Colliculus

Neuronal correlates of pitch in the Inferior Colliculus Neuronal correlates of pitch in the Inferior Colliculus Didier A. Depireux David J. Klein Jonathan Z. Simon Shihab A. Shamma Institute for Systems Research University of Maryland College Park, MD 20742-3311

More information

Study on method of estimating direct arrival using monaural modulation sp. Author(s)Ando, Masaru; Morikawa, Daisuke; Uno

Study on method of estimating direct arrival using monaural modulation sp. Author(s)Ando, Masaru; Morikawa, Daisuke; Uno JAIST Reposi https://dspace.j Title Study on method of estimating direct arrival using monaural modulation sp Author(s)Ando, Masaru; Morikawa, Daisuke; Uno Citation Journal of Signal Processing, 18(4):

More information

Intensity Discrimination and Binaural Interaction

Intensity Discrimination and Binaural Interaction Technical University of Denmark Intensity Discrimination and Binaural Interaction 2 nd semester project DTU Electrical Engineering Acoustic Technology Spring semester 2008 Group 5 Troels Schmidt Lindgreen

More information

Indoor Sound Localization

Indoor Sound Localization MIN-Fakultät Fachbereich Informatik Indoor Sound Localization Fares Abawi Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik Technische Aspekte Multimodaler

More information

Exploiting envelope fluctuations to achieve robust extraction and intelligent integration of binaural cues

Exploiting envelope fluctuations to achieve robust extraction and intelligent integration of binaural cues The Technology of Binaural Listening & Understanding: Paper ICA216-445 Exploiting envelope fluctuations to achieve robust extraction and intelligent integration of binaural cues G. Christopher Stecker

More information

Speaker Isolation in a Cocktail-Party Setting

Speaker Isolation in a Cocktail-Party Setting Speaker Isolation in a Cocktail-Party Setting M.K. Alisdairi Columbia University M.S. Candidate Electrical Engineering Spring Abstract the human auditory system is capable of performing many interesting

More information

Automatic Text-Independent. Speaker. Recognition Approaches Using Binaural Inputs

Automatic Text-Independent. Speaker. Recognition Approaches Using Binaural Inputs Automatic Text-Independent Speaker Recognition Approaches Using Binaural Inputs Karim Youssef, Sylvain Argentieri and Jean-Luc Zarader 1 Outline Automatic speaker recognition: introduction Designed systems

More information

NAME STUDENT # ELEC 484 Audio Signal Processing. Midterm Exam July Listening test

NAME STUDENT # ELEC 484 Audio Signal Processing. Midterm Exam July Listening test NAME STUDENT # ELEC 484 Audio Signal Processing Midterm Exam July 2008 CLOSED BOOK EXAM Time 1 hour Listening test Choose one of the digital audio effects for each sound example. Put only ONE mark in each

More information

Introduction. 1.1 Surround sound

Introduction. 1.1 Surround sound Introduction 1 This chapter introduces the project. First a brief description of surround sound is presented. A problem statement is defined which leads to the goal of the project. Finally the scope of

More information

EXPLORATION OF A BIOLOGICALLY INSPIRED MODEL FOR SOUND SOURCE LOCALIZATION IN 3D SPACE

EXPLORATION OF A BIOLOGICALLY INSPIRED MODEL FOR SOUND SOURCE LOCALIZATION IN 3D SPACE EXPLORATION OF A BIOLOGICALLY INSPIRED MODEL FOR SOUND SOURCE LOCALIZATION IN 3D SPACE Symeon Mattes, ISVR Acoustics Group University of Southampton, Southampton, UK symeon.mattes@soton.ac.uk Philip Arthur

More information

Spatial Audio Reproduction: Towards Individualized Binaural Sound

Spatial Audio Reproduction: Towards Individualized Binaural Sound Spatial Audio Reproduction: Towards Individualized Binaural Sound WILLIAM G. GARDNER Wave Arts, Inc. Arlington, Massachusetts INTRODUCTION The compact disc (CD) format records audio with 16-bit resolution

More information

THE TEMPORAL and spectral structure of a sound signal

THE TEMPORAL and spectral structure of a sound signal IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 1, JANUARY 2005 105 Localization of Virtual Sources in Multichannel Audio Reproduction Ville Pulkki and Toni Hirvonen Abstract The localization

More information

BINAURAL RECORDING SYSTEM AND SOUND MAP OF MALAGA

BINAURAL RECORDING SYSTEM AND SOUND MAP OF MALAGA EUROPEAN SYMPOSIUM ON UNDERWATER BINAURAL RECORDING SYSTEM AND SOUND MAP OF MALAGA PACS: Rosas Pérez, Carmen; Luna Ramírez, Salvador Universidad de Málaga Campus de Teatinos, 29071 Málaga, España Tel:+34

More information

Audio Engineering Society. Convention Paper. Presented at the 131st Convention 2011 October New York, NY, USA

Audio Engineering Society. Convention Paper. Presented at the 131st Convention 2011 October New York, NY, USA Audio Engineering Society Convention Paper Presented at the 131st Convention 2011 October 20 23 New York, NY, USA This Convention paper was selected based on a submitted abstract and 750-word precis that

More information

arxiv: v2 [q-bio.nc] 19 Feb 2014

arxiv: v2 [q-bio.nc] 19 Feb 2014 Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation Wiktor M lynarski Max-Planck Institute for Mathematics in the Sciences mlynar@mis.mpg.de arxiv:1311.0607v2

More information

III. Publication III. c 2005 Toni Hirvonen.

III. Publication III. c 2005 Toni Hirvonen. III Publication III Hirvonen, T., Segregation of Two Simultaneously Arriving Narrowband Noise Signals as a Function of Spatial and Frequency Separation, in Proceedings of th International Conference on

More information

Ripples in the Anterior Auditory Field and Inferior Colliculus of the Ferret

Ripples in the Anterior Auditory Field and Inferior Colliculus of the Ferret Ripples in the Anterior Auditory Field and Inferior Colliculus of the Ferret Didier Depireux Nina Kowalski Shihab Shamma Tony Owens Huib Versnel Amitai Kohn University of Maryland College Park Supported

More information

Biophysical model of coincidence detection in single Nucleus Laminaris neurons

Biophysical model of coincidence detection in single Nucleus Laminaris neurons Biophysical model of coincidence detection in single Nucleus Laminaris neurons Jonathan Z. Simon Catherine E. Carr 2 Shihab A. Shamma,3 2 Department of Biology 3 Department of Electrical Engineering Supported

More information

Sound source localization and its use in multimedia applications

Sound source localization and its use in multimedia applications Notes for lecture/ Zack Settel, McGill University Sound source localization and its use in multimedia applications Introduction With the arrival of real-time binaural or "3D" digital audio processing,

More information

A cat's cocktail party: Psychophysical, neurophysiological, and computational studies of spatial release from masking

A cat's cocktail party: Psychophysical, neurophysiological, and computational studies of spatial release from masking A cat's cocktail party: Psychophysical, neurophysiological, and computational studies of spatial release from masking Courtney C. Lane 1, Norbert Kopco 2, Bertrand Delgutte 1, Barbara G. Shinn- Cunningham

More information

3D audio overview : from 2.0 to N.M (?)

3D audio overview : from 2.0 to N.M (?) 3D audio overview : from 2.0 to N.M (?) Orange Labs Rozenn Nicol, Research & Development, 10/05/2012, Journée de printemps de la Société Suisse d Acoustique "Audio 3D" SSA, AES, SFA Signal multicanal 3D

More information

Spectro-Temporal Processing of Dynamic Broadband Sounds In Auditory Cortex

Spectro-Temporal Processing of Dynamic Broadband Sounds In Auditory Cortex Spectro-Temporal Processing of Dynamic Broadband Sounds In Auditory Cortex Shihab Shamma Jonathan Simon* Didier Depireux David Klein Institute for Systems Research & Department of Electrical Engineering

More information

Tone-in-noise detection: Observed discrepancies in spectral integration. Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O.

Tone-in-noise detection: Observed discrepancies in spectral integration. Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O. Tone-in-noise detection: Observed discrepancies in spectral integration Nicolas Le Goff a) Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands Armin Kohlrausch b) and

More information

Auditory Localization

Auditory Localization Auditory Localization CMPT 468: Sound Localization Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University November 15, 2013 Auditory locatlization is the human perception

More information

AUDL 4007 Auditory Perception. Week 1. The cochlea & auditory nerve: Obligatory stages of auditory processing

AUDL 4007 Auditory Perception. Week 1. The cochlea & auditory nerve: Obligatory stages of auditory processing AUDL 4007 Auditory Perception Week 1 The cochlea & auditory nerve: Obligatory stages of auditory processing 1 Think of the ear as a collection of systems, transforming sounds to be sent to the brain 25

More information

Binaural Mechanisms that Emphasize Consistent Interaural Timing Information over Frequency

Binaural Mechanisms that Emphasize Consistent Interaural Timing Information over Frequency Binaural Mechanisms that Emphasize Consistent Interaural Timing Information over Frequency Richard M. Stern 1 and Constantine Trahiotis 2 1 Department of Electrical and Computer Engineering and Biomedical

More information

Distance Estimation and Localization of Sound Sources in Reverberant Conditions using Deep Neural Networks

Distance Estimation and Localization of Sound Sources in Reverberant Conditions using Deep Neural Networks Distance Estimation and Localization of Sound Sources in Reverberant Conditions using Deep Neural Networks Mariam Yiwere 1 and Eun Joo Rhee 2 1 Department of Computer Engineering, Hanbat National University,

More information

Upper hemisphere sound localization using head-related transfer functions in the median plane and interaural differences

Upper hemisphere sound localization using head-related transfer functions in the median plane and interaural differences Acoust. Sci. & Tech. 24, 5 (23) PAPER Upper hemisphere sound localization using head-related transfer functions in the median plane and interaural differences Masayuki Morimoto 1;, Kazuhiro Iida 2;y and

More information

PERSONAL 3D AUDIO SYSTEM WITH LOUDSPEAKERS

PERSONAL 3D AUDIO SYSTEM WITH LOUDSPEAKERS PERSONAL 3D AUDIO SYSTEM WITH LOUDSPEAKERS Myung-Suk Song #1, Cha Zhang 2, Dinei Florencio 3, and Hong-Goo Kang #4 # Department of Electrical and Electronic, Yonsei University Microsoft Research 1 earth112@dsp.yonsei.ac.kr,

More information

Ivan Tashev Microsoft Research

Ivan Tashev Microsoft Research Hannes Gamper Microsoft Research David Johnston Microsoft Research Ivan Tashev Microsoft Research Mark R. P. Thomas Dolby Laboratories Jens Ahrens Chalmers University, Sweden Augmented and virtual reality,

More information

The analysis of multi-channel sound reproduction algorithms using HRTF data

The analysis of multi-channel sound reproduction algorithms using HRTF data The analysis of multichannel sound reproduction algorithms using HRTF data B. Wiggins, I. PatersonStephens, P. Schillebeeckx Processing Applications Research Group University of Derby Derby, United Kingdom

More information

Audio Engineering Society. Convention Paper. Presented at the 124th Convention 2008 May Amsterdam, The Netherlands

Audio Engineering Society. Convention Paper. Presented at the 124th Convention 2008 May Amsterdam, The Netherlands Audio Engineering Society Convention Paper Presented at the 124th Convention 2008 May 17 20 Amsterdam, The Netherlands The papers at this Convention have been selected on the basis of a submitted abstract

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Psychological and Physiological Acoustics Session 3pPP: Multimodal Influences

More information

Binaural Speaker Recognition for Humanoid Robots

Binaural Speaker Recognition for Humanoid Robots Binaural Speaker Recognition for Humanoid Robots Karim Youssef, Sylvain Argentieri and Jean-Luc Zarader Université Pierre et Marie Curie Institut des Systèmes Intelligents et de Robotique, CNRS UMR 7222

More information

Effect of filter spacing and correct tonotopic representation on melody recognition: Implications for cochlear implants

Effect of filter spacing and correct tonotopic representation on melody recognition: Implications for cochlear implants Effect of filter spacing and correct tonotopic representation on melody recognition: Implications for cochlear implants Kalyan S. Kasturi and Philipos C. Loizou Dept. of Electrical Engineering The University

More information

Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA. Why Ambisonics Does Work

Audio Engineering Society. Convention Paper. Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA. Why Ambisonics Does Work Audio Engineering Society Convention Paper Presented at the 129th Convention 2010 November 4 7 San Francisco, CA, USA The papers at this Convention have been selected on the basis of a submitted abstract

More information

A classification-based cocktail-party processor

A classification-based cocktail-party processor A classification-based cocktail-party processor Nicoleta Roman, DeLiang Wang Department of Computer and Information Science and Center for Cognitive Science The Ohio State University Columbus, OH 43, USA

More information

Phase and Feedback in the Nonlinear Brain. Malcolm Slaney (IBM and Stanford) Hiroko Shiraiwa-Terasawa (Stanford) Regaip Sen (Stanford)

Phase and Feedback in the Nonlinear Brain. Malcolm Slaney (IBM and Stanford) Hiroko Shiraiwa-Terasawa (Stanford) Regaip Sen (Stanford) Phase and Feedback in the Nonlinear Brain Malcolm Slaney (IBM and Stanford) Hiroko Shiraiwa-Terasawa (Stanford) Regaip Sen (Stanford) Auditory processing pre-cosyne workshop March 23, 2004 Simplistic Models

More information

Digital Audio Signal Processing

Digital Audio Signal Processing Speech & Audio Processing - Part II Digital Audio Signal Processing Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be homes.esat.kuleuven.be/~moonen/ Speech & Audio Processing

More information

HRIR Customization in the Median Plane via Principal Components Analysis

HRIR Customization in the Median Plane via Principal Components Analysis 한국소음진동공학회 27 년춘계학술대회논문집 KSNVE7S-6- HRIR Customization in the Median Plane via Principal Components Analysis 주성분분석을이용한 HRIR 맞춤기법 Sungmok Hwang and Youngjin Park* 황성목 박영진 Key Words : Head-Related Transfer

More information

Psychoacoustics of 3D Sound Recording: Research and Practice

Psychoacoustics of 3D Sound Recording: Research and Practice Psychoacoustics of 3D Sound Recording: Research and Practice Dr Hyunkook Lee University of Huddersfield, UK h.lee@hud.ac.uk www.hyunkooklee.com www.hud.ac.uk/apl About me Senior Lecturer (i.e. Associate

More information

A Bayesian Binaural System for 3D Sound-Source Localisation

A Bayesian Binaural System for 3D Sound-Source Localisation A Bayesian Binaural System for 3D Sound-Source Localisation C. Pinho, J.F. Ferreira, Pierre Bessière, J. Dias To cite this version: C. Pinho, J.F. Ferreira, Pierre Bessière, J. Dias. A Bayesian Binaural

More information

High performance 3D sound localization for surveillance applications Keyrouz, F.; Dipold, K.; Keyrouz, S.

High performance 3D sound localization for surveillance applications Keyrouz, F.; Dipold, K.; Keyrouz, S. High performance 3D sound localization for surveillance applications Keyrouz, F.; Dipold, K.; Keyrouz, S. Published in: Conference on Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. DOI:

More information

BIOLOGICALLY-INSPIRED SIGNAL PROCESSOR USING LATERAL INHIBITION AND INTEGRATIVE FUNCTION MECHANISMS FOR HIGH INSTANTANEOUS DYNAMIC RANGE

BIOLOGICALLY-INSPIRED SIGNAL PROCESSOR USING LATERAL INHIBITION AND INTEGRATIVE FUNCTION MECHANISMS FOR HIGH INSTANTANEOUS DYNAMIC RANGE BIOLOGICALLY-INSPIRED SIGNAL PROCESSOR USING LATERAL INHIBITION AND INTEGRATIVE FUNCTION MECHANISMS FOR HIGH INSTANTANEOUS DYNAMIC RANGE Kiran George Department of Computer Engineering California State

More information

1856 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 7, SEPTEMBER /$ IEEE

1856 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 7, SEPTEMBER /$ IEEE 1856 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 7, SEPTEMBER 2010 Sequential Organization of Speech in Reverberant Environments by Integrating Monaural Grouping and Binaural

More information

HRTF measurement on KEMAR manikin

HRTF measurement on KEMAR manikin Proceedings of ACOUSTICS 29 23 25 November 29, Adelaide, Australia HRTF measurement on KEMAR manikin Mengqiu Zhang, Wen Zhang, Rodney A. Kennedy, and Thushara D. Abhayapala ABSTRACT Applied Signal Processing

More information

Limulus eye: a filter cascade. Limulus 9/23/2011. Dynamic Response to Step Increase in Light Intensity

Limulus eye: a filter cascade. Limulus 9/23/2011. Dynamic Response to Step Increase in Light Intensity Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L17. Neural processing in Linear Systems 2: Spatial Filtering C. D. Hopkins Sept. 23, 2011 Limulus Limulus eye:

More information

DECORRELATION TECHNIQUES FOR THE RENDERING OF APPARENT SOUND SOURCE WIDTH IN 3D AUDIO DISPLAYS. Guillaume Potard, Ian Burnett

DECORRELATION TECHNIQUES FOR THE RENDERING OF APPARENT SOUND SOURCE WIDTH IN 3D AUDIO DISPLAYS. Guillaume Potard, Ian Burnett 04 DAFx DECORRELATION TECHNIQUES FOR THE RENDERING OF APPARENT SOUND SOURCE WIDTH IN 3D AUDIO DISPLAYS Guillaume Potard, Ian Burnett School of Electrical, Computer and Telecommunications Engineering University

More information

Modulation Encoding in Auditory Cortex. Jonathan Z. Simon University of Maryland

Modulation Encoding in Auditory Cortex. Jonathan Z. Simon University of Maryland Modulation Encoding in Auditory Cortex Jonathan Z. Simon University of Maryland 1 Acknowledgments Harsha Agashe Nick Asendorf Marisel Delagado Huan Luo Nai Ding Kai Li Sum Juanjuan Xiang Jiachen Zhuo Dan

More information

A NEUROMORPHIC MICROPHONE FOR SOUND LOCALIZATION CHIANG-JUNG PU

A NEUROMORPHIC MICROPHONE FOR SOUND LOCALIZATION CHIANG-JUNG PU A NEUROMORPHIC MICROPHONE FOR SOUND LOCALIZATION By CHIANG-JUNG PU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Neural Maps of Interaural Time and Intensity Differences in the Optic Tectum of the Barn Owl

Neural Maps of Interaural Time and Intensity Differences in the Optic Tectum of the Barn Owl The Journal of Neuroscience, July 1969, g(7): 2591-2605 Neural Maps of Interaural Time and Intensity Differences in the Optic Tectum of the Barn Owl John F. Olsen, Eric I. Knudsen, and Steven D. Esterly

More information

Binaural Hearing- Human Ability of Sound Source Localization

Binaural Hearing- Human Ability of Sound Source Localization MEE09:07 Binaural Hearing- Human Ability of Sound Source Localization Parvaneh Parhizkari Master of Science in Electrical Engineering Blekinge Institute of Technology December 2008 Blekinge Institute of

More information

PERSONALIZED HEAD RELATED TRANSFER FUNCTION MEASUREMENT AND VERIFICATION THROUGH SOUND LOCALIZATION RESOLUTION

PERSONALIZED HEAD RELATED TRANSFER FUNCTION MEASUREMENT AND VERIFICATION THROUGH SOUND LOCALIZATION RESOLUTION PERSONALIZED HEAD RELATED TRANSFER FUNCTION MEASUREMENT AND VERIFICATION THROUGH SOUND LOCALIZATION RESOLUTION Michał Pec, Michał Bujacz, Paweł Strumiłło Institute of Electronics, Technical University

More information

UAV Sound Source Localization

UAV Sound Source Localization UAV Sound Source Localization Computational Neuro Engineering Project Laboratory FINAL REPORT handed in by Peter Hausamann born on May 4th, 1990 residing in: Kreillerstraße 71 81673 München Institute of

More information

Pitch estimation using spiking neurons

Pitch estimation using spiking neurons Pitch estimation using spiking s K. Voutsas J. Adamy Research Assistant Head of Control Theory and Robotics Lab Institute of Automatic Control Control Theory and Robotics Lab Institute of Automatic Control

More information

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1 Experiment 4.B Position Control Electronics Design Laboratory 1 Procedures 4.B.1 4.B.2 4.B.3 4.B.4 Read Encoder with Arduino Position Control by Counting Encoder Pulses Demo Setup Extra Credit Electronics

More information

AN IMPLEMENTATION OF VIRTUAL ACOUSTIC SPACE FOR NEUROPHYSIOLOGICAL STUDIES OF DIRECTIONAL HEARING

AN IMPLEMENTATION OF VIRTUAL ACOUSTIC SPACE FOR NEUROPHYSIOLOGICAL STUDIES OF DIRECTIONAL HEARING CHAPTER 5 AN IMPLEMENTATION OF VIRTUAL ACOUSTIC SPACE FOR NEUROPHYSIOLOGICAL STUDIES OF DIRECTIONAL HEARING Richard A. Reale, Jiashu Chen, Joseph E. Hind and John F. Brugge 1. INTRODUCTION Sound produced

More information

Recent Advances in Acoustic Signal Extraction and Dereverberation

Recent Advances in Acoustic Signal Extraction and Dereverberation Recent Advances in Acoustic Signal Extraction and Dereverberation Emanuël Habets Erlangen Colloquium 2016 Scenario Spatial Filtering Estimated Desired Signal Undesired sound components: Sensor noise Competing

More information

396 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2011

396 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2011 396 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 2, FEBRUARY 2011 Obtaining Binaural Room Impulse Responses From B-Format Impulse Responses Using Frequency-Dependent Coherence

More information

PSYC Sensation & Perception Tue/Thu Syllabus : Topics and reading

PSYC Sensation & Perception Tue/Thu Syllabus : Topics and reading Instructor : Maxim Volgushev Office : BOUS 133 / BOUS 025 Phone 486-6825 (lab) Office hours: Please make an appointment Email: maxim.volgushev@uconn.edu by email or in the class Textbooks/Reading: 1. (main,

More information

A binaural auditory model and applications to spatial sound evaluation

A binaural auditory model and applications to spatial sound evaluation A binaural auditory model and applications to spatial sound evaluation Ma r k o Ta k a n e n 1, Ga ë ta n Lo r h o 2, a n d Mat t i Ka r ja l a i n e n 1 1 Helsinki University of Technology, Dept. of Signal

More information

Robust Speech Recognition Based on Binaural Auditory Processing

Robust Speech Recognition Based on Binaural Auditory Processing Robust Speech Recognition Based on Binaural Auditory Processing Anjali Menon 1, Chanwoo Kim 2, Richard M. Stern 1 1 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,

More information