Chapter 9. Conclusions. 9.1 Summary Perceived distances derived from optic ow

Size: px
Start display at page:

Download "Chapter 9. Conclusions. 9.1 Summary Perceived distances derived from optic ow"

Transcription

1 Chapter 9 Conclusions 9.1 Summary For successful navigation it is essential to be aware of one's own movement direction as well as of the distance travelled. When we walk around in our daily life, we get lots of information about our movements: the position and orientation of our limbs are indicated by proprioception, the vestibular sense signals orientation and acceleration of our head. But the most important information for our locomotion is provided by the visual system. Besides orientation on landmarks, humans can also use self-induced optic ow elds to control their locomotion. On the basis of optic ow elds humans are able to detect the direction of their locomotion and can judge the time to elapse when they reach an object. However, little is known about the perception of travel distances on the basis of optic ow elds until now. To investigate this aspect of ow elds I used psychophysical experiments. In these experiments I presented a reference distance either in a static scene (chapters 4 and 5) or in terms of a visually simulated self-motion (chapters 3, 6, and 7). The subjects had to indicate the perceived reference distance in terms of a virtual ground interval (chapters 3, 4, 6, and 7), in terms of a visually simulated self-motion (chapters 5 and 6), or in terms of multiple eye heights/actively walking (chapter 6). I can summarise the results of the experiments as follows: Perceived distances derived from optic ow In chapter 3 I investigated if human subjects possess an abstract distance gauge derived from optic ow and whether or not they can indicate the perceived travel distances in terms of virtual ground intervals. Therefore, I used three dierent virtual scenes, which provided dierent depth information and I simulated self-motions between 3 m and 9 105

2 CHAPTER 9. CONCLUSIONS 106 m travel distance. Afterwards, the subjects had to adjust a virtual ground interval in size of the perceived travel distance. The results were: ˆ The indicated distances were linearly correlated with the simulated travel distances. ˆ The travel distances were increasingly underestimated with increasing simulated distances (21 % to 28 %). ˆ The perception of same travel distances was independent of the used simulation velocities and durations. ˆ The perception of the simulated distances was independent of the used depth information, provided by the used virtual environments Underestimation of the travelled distances With the experiments in chapter 5 I investigated why the travel distances derived from optic ow were underestimated in my experiments (about 27 %) but overestimated in the study of Redlick et al. (2001) (about 40 %). In contrast to my previous experiments, the authors in the study of Redlick et al. rst visually presented movement goals in distances between 4 m and 32 m in a static scene. Afterwards they visually simulated observer's self-motions with dierent translation velocities (between 0.4 m/s and 6.4 m/s). The subject's task was to indicate when they thought they reached the virtual position of the movement goal. In a rst experiment I replicated the experiments of Redlick et al. with my experimental set-up. In a second experiment I simulated target distances between 3 m and 9 m (as in my rst experiments). For the self-motion simulation I used simulation velocities ranging from 1 m/s to 3 m/s. The results were: ˆ Regardless of the used values for the target distances and self-motion velocities the indicated distances were linearly correlated with the simulated distances. ˆ The replication of the experiments of Redlick et al. (2001) also revealed overestimation of the travelled distances of about 40 %. ˆ When I reduced the target distances and simulated the self-motion with faster velocities, the subjects underestimated the travel distances of 20 %. ˆ Same target distances were indicated identically regardless of the used self-motion velocity. This was only the case when I used target distances between 3 m and 9 m and self-motion velocities between 1 m/s and 3 m/s.

3 CHAPTER 9. CONCLUSIONS Metric of the visual space in virtual environments In chapter 4 I examined how the visual space is perceived in virtual environments and whether or not this metric can explain the observed underestimation of the travel distances derived from optic ow. To survey the visual space I presented two virtual depth intervals. These intervals varied in the distance to the observer's virtual position and size in depth. One of these intervals was xed in size, the other one could be adjusted by the subject. The subject's task was to indicate the size of the xed ground interval with the adjustable one. The results were: ˆ The perceived metric of the visual space is the same in the real world and in virtual environments. ˆ With increasing distance to the observer's virtual position and simulated interval sizes the distances were increasingly underestimated. ˆ The indicated distances were not linearly correlated with the simulated interval sizes but follow a psychometric function of the form f(r) = ae δ r Dierent ways to indicate the travelled distances In chapter 6 I investigated if the way the subjects indicate the travelled distances is the source of the observed underestimation of the travel distances in chapter 3. I performed three experiments in which I instructed the subjects to indicate the perceived travel distances of a visually simulated self-motion in various ways. In the rst experiment, the subjects rst had to reproduce the travelled distances with an actively controlled self-motion. Afterwards, the same travel distances had to be indicated in terms of a virtual ground interval. The results were: ˆ Subjects showed accurate distance estimation when they indicated the travelled distances with an actively controlled self-motion. ˆ The accurate active reproduction of the travel distances did not reduce the error in distance underestimation when the subjects indicated these distances in terms of a virtual ground interval (35 % underestimation). ˆ Both types of distance indication showed linear correlation between the simulated and indicated travel distances. ˆ Same simulated distances were mostly indicated identically regardless of the used self-motion velocity.

4 CHAPTER 9. CONCLUSIONS 108 In a second experiment I rst visually simulated self-motions of dierent distances (between 2.6 m and 10.4 m) and asked the subjects to indicate the perceived distances in terms of simulated eye heights above the ground plane. The results were: ˆ Simulated and indicated distances were linearly correlated. ˆ The subjects underestimated the simulated distances of about 21 %. In the third experiment I again rst visually simulated self-motions between 1.5 m and 6.25 m and asked the subjects to actively walk the same distance without visual information about their movement. The results were: ˆ The simulated distances were underestimated of about 29 %. ˆ There was a linear correlation between the simulated and indicated distances. ˆ Same travel distances were indicated dierently depending on the used selfmotion velocity Stereoscopic presentation of the virtual scene With the experiments of chapter 7 I investigated if the use of additional depth information in terms of stereoscopic presentation of the virtual environment could reduce the error in distance underestimation observed in chapter 3. Therefore, I simulated selfmotions on two dierent virtual environments, providing dierent depth information, and asked the subjects to indicate the perceived travel distance of the self-motions in terms of virtual ground intervals. Additionally, I performed the experiments with my experimental set-up and in a Computer Animated Virtual Environment (CAVE). With projections of the stimuli onto the front and the two side walls as well as onto the oor, the stimuli appeared in their full scale in the CAVE. The results were: ˆ The indicated distances were linearly correlated with the simulated travel distances in all tested environments and both experimental set-ups. ˆ The travel distances were underestimated of about 21 % and 36 % in the experiments performed with my experimental set-up. ˆ The travel distances were underestimated of about 33 % and 36 % when the motion was simulated in the CAVE. ˆ The error in distance estimation did not signicantly change with the use of stereoscopic presentation compared to non-stereoscopic presentation of the virtual scene.

5 CHAPTER 9. CONCLUSIONS 109 ˆ The complete immersion into the virtual scene in the CAVE did not improve the distance estimation signicantly.

Distance Perception derived from Optic Flow (Wahrnehmung von zurückgelegten Distanzen auf der Basis Optischer Flussfelder)

Distance Perception derived from Optic Flow (Wahrnehmung von zurückgelegten Distanzen auf der Basis Optischer Flussfelder) Distance Perception derived from Optic Flow (Wahrnehmung von zurückgelegten Distanzen auf der Basis Optischer Flussfelder) Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften

More information

Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments

Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments Date of Report: September 1 st, 2016 Fellow: Heather Panic Advisors: James R. Lackner and Paul DiZio Institution: Brandeis

More information

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Helmut Schrom-Feiertag 1, Christoph Schinko 2, Volker Settgast 3, and Stefan Seer 1 1 Austrian

More information

WHEN moving through the real world humans

WHEN moving through the real world humans TUNING SELF-MOTION PERCEPTION IN VIRTUAL REALITY WITH VISUAL ILLUSIONS 1 Tuning Self-Motion Perception in Virtual Reality with Visual Illusions Gerd Bruder, Student Member, IEEE, Frank Steinicke, Member,

More information

the ecological approach to vision - evolution & development

the ecological approach to vision - evolution & development PS36: Perception and Action (L.3) Driving a vehicle: control of heading, collision avoidance, braking Johannes M. Zanker the ecological approach to vision: from insects to humans standing up on your feet,

More information

Psychophysics of night vision device halo

Psychophysics of night vision device halo University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2009 Psychophysics of night vision device halo Robert S Allison

More information

Distance perception from motion parallax and ground contact. Rui Ni and Myron L. Braunstein. University of California, Irvine, California

Distance perception from motion parallax and ground contact. Rui Ni and Myron L. Braunstein. University of California, Irvine, California Distance perception 1 Distance perception from motion parallax and ground contact Rui Ni and Myron L. Braunstein University of California, Irvine, California George J. Andersen University of California,

More information

Self-Motion Illusions in Immersive Virtual Reality Environments

Self-Motion Illusions in Immersive Virtual Reality Environments Self-Motion Illusions in Immersive Virtual Reality Environments Gerd Bruder, Frank Steinicke Visualization and Computer Graphics Research Group Department of Computer Science University of Münster Phil

More information

Takeharu Seno 1,3,4, Akiyoshi Kitaoka 2, Stephen Palmisano 5 1

Takeharu Seno 1,3,4, Akiyoshi Kitaoka 2, Stephen Palmisano 5 1 Perception, 13, volume 42, pages 11 1 doi:1.168/p711 SHORT AND SWEET Vection induced by illusory motion in a stationary image Takeharu Seno 1,3,4, Akiyoshi Kitaoka 2, Stephen Palmisano 1 Institute for

More information

B.A. II Psychology Paper A MOVEMENT PERCEPTION. Dr. Neelam Rathee Department of Psychology G.C.G.-11, Chandigarh

B.A. II Psychology Paper A MOVEMENT PERCEPTION. Dr. Neelam Rathee Department of Psychology G.C.G.-11, Chandigarh B.A. II Psychology Paper A MOVEMENT PERCEPTION Dr. Neelam Rathee Department of Psychology G.C.G.-11, Chandigarh 2 The Perception of Movement Where is it going? 3 Biological Functions of Motion Perception

More information

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Sensing self motion Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems Position sensing Velocity and acceleration sensing Force sensing Vision based

More information

VIRTUAL REALITY: ITS USEFULNESS FOR ERGONOMIC ANALYSIS. Lawrence E. Whitman Michael Jorgensen Kuresh Hathiyari Don Malzahn

VIRTUAL REALITY: ITS USEFULNESS FOR ERGONOMIC ANALYSIS. Lawrence E. Whitman Michael Jorgensen Kuresh Hathiyari Don Malzahn Proceedings of the 2004 Winter Simulation Conference R.G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds. VIRTUAL REALITY: ITS USEFULNESS FOR ERGONOMIC ANALYSIS Lawrence E. Whitman Michael

More information

Spatial navigation in humans

Spatial navigation in humans Spatial navigation in humans Recap: navigation strategies and spatial representations Spatial navigation with immersive virtual reality (VENLab) Do we construct a metric cognitive map? Importance of visual

More information

A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang

A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang Vestibular Responses in Dorsal Visual Stream and Their Role in Heading Perception Recent experiments

More information

The Mona Lisa Effect: Perception of Gaze Direction in Real and Pictured Faces

The Mona Lisa Effect: Perception of Gaze Direction in Real and Pictured Faces Studies in Perception and Action VII S. Rogers & J. Effken (Eds.)! 2003 Lawrence Erlbaum Associates, Inc. The Mona Lisa Effect: Perception of Gaze Direction in Real and Pictured Faces Sheena Rogers 1,

More information

IOC, Vector sum, and squaring: three different motion effects or one?

IOC, Vector sum, and squaring: three different motion effects or one? Vision Research 41 (2001) 965 972 www.elsevier.com/locate/visres IOC, Vector sum, and squaring: three different motion effects or one? L. Bowns * School of Psychology, Uni ersity of Nottingham, Uni ersity

More information

Pursuit compensation during self-motion

Pursuit compensation during self-motion Perception, 2001, volume 30, pages 1465 ^ 1488 DOI:10.1068/p3271 Pursuit compensation during self-motion James A Crowell Department of Psychology, Townshend Hall, Ohio State University, 1885 Neil Avenue,

More information

VISUAL VESTIBULAR INTERACTIONS FOR SELF MOTION ESTIMATION

VISUAL VESTIBULAR INTERACTIONS FOR SELF MOTION ESTIMATION VISUAL VESTIBULAR INTERACTIONS FOR SELF MOTION ESTIMATION Butler J 1, Smith S T 2, Beykirch K 1, Bülthoff H H 1 1 Max Planck Institute for Biological Cybernetics, Tübingen, Germany 2 University College

More information

Feeding human senses through Immersion

Feeding human senses through Immersion Virtual Reality Feeding human senses through Immersion 1. How many human senses? 2. Overview of key human senses 3. Sensory stimulation through Immersion 4. Conclusion Th3.1 1. How many human senses? [TRV

More information

Immersive Guided Tours for Virtual Tourism through 3D City Models

Immersive Guided Tours for Virtual Tourism through 3D City Models Immersive Guided Tours for Virtual Tourism through 3D City Models Rüdiger Beimler, Gerd Bruder, Frank Steinicke Immersive Media Group (IMG) Department of Computer Science University of Würzburg E-Mail:

More information

Detection Thresholds for Rotation and Translation Gains in 360 Video-based Telepresence Systems

Detection Thresholds for Rotation and Translation Gains in 360 Video-based Telepresence Systems Detection Thresholds for Rotation and Translation Gains in 360 Video-based Telepresence Systems Jingxin Zhang, Eike Langbehn, Dennis Krupke, Nicholas Katzakis and Frank Steinicke, Member, IEEE Fig. 1.

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

Virtual Distance Estimation in a CAVE

Virtual Distance Estimation in a CAVE Virtual Distance Estimation in a CAVE Eric Marsh, Jean-Rémy Chardonnet, Frédéric Merienne To cite this version: Eric Marsh, Jean-Rémy Chardonnet, Frédéric Merienne. Virtual Distance Estimation in a CAVE.

More information

Spatial Judgments from Different Vantage Points: A Different Perspective

Spatial Judgments from Different Vantage Points: A Different Perspective Spatial Judgments from Different Vantage Points: A Different Perspective Erik Prytz, Mark Scerbo and Kennedy Rebecca The self-archived postprint version of this journal article is available at Linköping

More information

Studying the Effects of Stereo, Head Tracking, and Field of Regard on a Small- Scale Spatial Judgment Task

Studying the Effects of Stereo, Head Tracking, and Field of Regard on a Small- Scale Spatial Judgment Task IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID 1 Studying the Effects of Stereo, Head Tracking, and Field of Regard on a Small- Scale Spatial Judgment Task Eric D. Ragan, Regis

More information

Redirecting Walking and Driving for Natural Navigation in Immersive Virtual Environments

Redirecting Walking and Driving for Natural Navigation in Immersive Virtual Environments 538 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 4, APRIL 2012 Redirecting Walking and Driving for Natural Navigation in Immersive Virtual Environments Gerd Bruder, Member, IEEE,

More information

TED TED. τfac τpt. A intensity. B intensity A facilitation voltage Vfac. A direction voltage Vright. A output current Iout. Vfac. Vright. Vleft.

TED TED. τfac τpt. A intensity. B intensity A facilitation voltage Vfac. A direction voltage Vright. A output current Iout. Vfac. Vright. Vleft. Real-Time Analog VLSI Sensors for 2-D Direction of Motion Rainer A. Deutschmann ;2, Charles M. Higgins 2 and Christof Koch 2 Technische Universitat, Munchen 2 California Institute of Technology Pasadena,

More information

Multi variable strategy reduces symptoms of simulator sickness

Multi variable strategy reduces symptoms of simulator sickness Multi variable strategy reduces symptoms of simulator sickness Jorrit Kuipers Green Dino BV, Wageningen / Delft University of Technology 3ME, Delft, The Netherlands, jorrit@greendino.nl Introduction Interactive

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality Marc Erich Latoschik AI & VR Lab Artificial Intelligence Group University of Bielefeld Virtual Reality (or VR for short) Virtual Reality (or VR for short)

More information

Physical Presence in Virtual Worlds using PhysX

Physical Presence in Virtual Worlds using PhysX Physical Presence in Virtual Worlds using PhysX One of the biggest problems with interactive applications is how to suck the user into the experience, suspending their sense of disbelief so that they are

More information

The Effect of Opponent Noise on Image Quality

The Effect of Opponent Noise on Image Quality The Effect of Opponent Noise on Image Quality Garrett M. Johnson * and Mark D. Fairchild Munsell Color Science Laboratory, Rochester Institute of Technology Rochester, NY 14623 ABSTRACT A psychophysical

More information

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»!

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! The speaker is Anatole Lécuyer, senior researcher at Inria, Rennes, France; More information about him at : http://people.rennes.inria.fr/anatole.lecuyer/

More information

Prof. Greg Francis 5/27/08

Prof. Greg Francis 5/27/08 Visual Perception : Motion IIE 269: Cognitive Psychology Dr. Francis Lecture 11 Motion Motion is of tremendous importance for survival (Demo) Try to find the hidden bird in the figure below (http://illusionworks.com/hidden.htm)

More information

COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS

COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS COMPUTATIONAL ERGONOMICS A POSSIBLE EXTENSION OF COMPUTATIONAL NEUROSCIENCE? DEFINITIONS, POTENTIAL BENEFITS, AND A CASE STUDY ON CYBERSICKNESS Richard H.Y. So* and Felix W.K. Lor Computational Ergonomics

More information

Behavioural Realism as a metric of Presence

Behavioural Realism as a metric of Presence Behavioural Realism as a metric of Presence (1) Jonathan Freeman jfreem@essex.ac.uk 01206 873786 01206 873590 (2) Department of Psychology, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ,

More information

2 Study of an embarked vibro-impact system: experimental analysis

2 Study of an embarked vibro-impact system: experimental analysis 2 Study of an embarked vibro-impact system: experimental analysis This chapter presents and discusses the experimental part of the thesis. Two test rigs were built at the Dynamics and Vibrations laboratory

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

Vestibular cues and virtual environments: choosing the magnitude of the vestibular cue Laurence Harris 1;3 Michael Jenkin 2;3 Daniel C. Zikovitz 3 Dep

Vestibular cues and virtual environments: choosing the magnitude of the vestibular cue Laurence Harris 1;3 Michael Jenkin 2;3 Daniel C. Zikovitz 3 Dep Vestibular cues and virtual environments: choosing the magnitude of the vestibular cue Laurence Harris 1;3 Michael Jenkin 2;3 Daniel C. Zikovitz 3 Departments of Psychology 1, Computer Science 2, and Biology

More information

The Persistence of Vision in Spatio-Temporal Illusory Contours formed by Dynamically-Changing LED Arrays

The Persistence of Vision in Spatio-Temporal Illusory Contours formed by Dynamically-Changing LED Arrays The Persistence of Vision in Spatio-Temporal Illusory Contours formed by Dynamically-Changing LED Arrays Damian Gordon * and David Vernon Department of Computer Science Maynooth College Ireland ABSTRACT

More information

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems F. Steinicke, G. Bruder, H. Frenz 289 A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems Frank Steinicke 1, Gerd Bruder 1, Harald Frenz 2 1 Institute of Computer Science,

More information

Perceived depth is enhanced with parallax scanning

Perceived depth is enhanced with parallax scanning Perceived Depth is Enhanced with Parallax Scanning March 1, 1999 Dennis Proffitt & Tom Banton Department of Psychology University of Virginia Perceived depth is enhanced with parallax scanning Background

More information

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc.

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc. Human Vision and Human-Computer Interaction Much content from Jeff Johnson, UI Wizards, Inc. are these guidelines grounded in perceptual psychology and how can we apply them intelligently? Mach bands:

More information

tracker hardware data in tracker CAVE library coordinate system calibration table corrected data in tracker coordinate system

tracker hardware data in tracker CAVE library coordinate system calibration table corrected data in tracker coordinate system Line of Sight Method for Tracker Calibration in Projection-Based VR Systems Marek Czernuszenko, Daniel Sandin, Thomas DeFanti fmarek j dan j tomg @evl.uic.edu Electronic Visualization Laboratory (EVL)

More information

PERCEIVING MOVEMENT. Ways to create movement

PERCEIVING MOVEMENT. Ways to create movement PERCEIVING MOVEMENT Ways to create movement Perception More than one ways to create the sense of movement Real movement is only one of them Slide 2 Important for survival Animals become still when they

More information

High Performance Imaging Using Large Camera Arrays

High Performance Imaging Using Large Camera Arrays High Performance Imaging Using Large Camera Arrays Presentation of the original paper by Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam Barth, Andrew Adams, Mark Horowitz,

More information

Surface Contents Author Index

Surface Contents Author Index Angelina HO & Zhilin LI Surface Contents Author Index DESIGN OF DYNAMIC MAPS FOR LAND VEHICLE NAVIGATION Angelina HO, Zhilin LI* Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University

More information

ABSTRACT. Keywords: Color image differences, image appearance, image quality, vision modeling 1. INTRODUCTION

ABSTRACT. Keywords: Color image differences, image appearance, image quality, vision modeling 1. INTRODUCTION Measuring Images: Differences, Quality, and Appearance Garrett M. Johnson * and Mark D. Fairchild Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science, Rochester Institute of

More information

Perception in Immersive Environments

Perception in Immersive Environments Perception in Immersive Environments Scott Kuhl Department of Computer Science Augsburg College scott@kuhlweb.com Abstract Immersive environment (virtual reality) systems provide a unique way for researchers

More information

FSR99, International Conference on Field and Service Robotics 1999 (to appear) 1. Andrew Howard and Les Kitchen

FSR99, International Conference on Field and Service Robotics 1999 (to appear) 1. Andrew Howard and Les Kitchen FSR99, International Conference on Field and Service Robotics 1999 (to appear) 1 Cooperative Localisation and Mapping Andrew Howard and Les Kitchen Department of Computer Science and Software Engineering

More information

the dimensionality of the world Travelling through Space and Time Learning Outcomes Johannes M. Zanker

the dimensionality of the world Travelling through Space and Time Learning Outcomes Johannes M. Zanker Travelling through Space and Time Johannes M. Zanker http://www.pc.rhul.ac.uk/staff/j.zanker/ps1061/l4/ps1061_4.htm 05/02/2015 PS1061 Sensation & Perception #4 JMZ 1 Learning Outcomes at the end of this

More information

Quality Measure of Multicamera Image for Geometric Distortion

Quality Measure of Multicamera Image for Geometric Distortion Quality Measure of Multicamera for Geometric Distortion Mahesh G. Chinchole 1, Prof. Sanjeev.N.Jain 2 M.E. II nd Year student 1, Professor 2, Department of Electronics Engineering, SSVPSBSD College of

More information

Accelerating self-motion displays produce more compelling vection in depth

Accelerating self-motion displays produce more compelling vection in depth University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2008 Accelerating self-motion displays produce more compelling

More information

Vection in depth during consistent and inconsistent multisensory stimulation

Vection in depth during consistent and inconsistent multisensory stimulation University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2011 Vection in depth during consistent and inconsistent multisensory

More information

Wavelet Analysis of Crude Oil Futures. Collection Editor: Ian Akash Morrison

Wavelet Analysis of Crude Oil Futures. Collection Editor: Ian Akash Morrison Wavelet Analysis of Crude Oil Futures Collection Editor: Ian Akash Morrison Wavelet Analysis of Crude Oil Futures Collection Editor: Ian Akash Morrison Authors: Ian Akash Morrison Aniruddha Sen Online:

More information

Scene-Motion- and Latency-Perception Thresholds for Head-Mounted Displays

Scene-Motion- and Latency-Perception Thresholds for Head-Mounted Displays Scene-Motion- and Latency-Perception Thresholds for Head-Mounted Displays by Jason J. Jerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment

More information

Development of Virtual Simulation System for Housing Environment Using Rapid Prototype Method. Koji Ono and Yasushige Morikawa TAISEI CORPORATION

Development of Virtual Simulation System for Housing Environment Using Rapid Prototype Method. Koji Ono and Yasushige Morikawa TAISEI CORPORATION Seventh International IBPSA Conference Rio de Janeiro, Brazil August 13-15, 2001 Development of Virtual Simulation System for Housing Environment Using Rapid Prototype Method Koji Ono and Yasushige Morikawa

More information

Discriminating direction of motion trajectories from angular speed and background information

Discriminating direction of motion trajectories from angular speed and background information Atten Percept Psychophys (2013) 75:1570 1582 DOI 10.3758/s13414-013-0488-z Discriminating direction of motion trajectories from angular speed and background information Zheng Bian & Myron L. Braunstein

More information

Reorientation during Body Turns

Reorientation during Body Turns Joint Virtual Reality Conference of EGVE - ICAT - EuroVR (2009) M. Hirose, D. Schmalstieg, C. A. Wingrave, and K. Nishimura (Editors) Reorientation during Body Turns G. Bruder 1, F. Steinicke 1, K. Hinrichs

More information

Output Devices - Visual

Output Devices - Visual IMGD 5100: Immersive HCI Output Devices - Visual Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu Overview Here we are concerned with technology

More information

PERCEIVING MOTION CHAPTER 8

PERCEIVING MOTION CHAPTER 8 Motion 1 Perception (PSY 4204) Christine L. Ruva, Ph.D. PERCEIVING MOTION CHAPTER 8 Overview of Questions Why do some animals freeze in place when they sense danger? How do films create movement from still

More information

Haptic Camera Manipulation: Extending the Camera In Hand Metaphor

Haptic Camera Manipulation: Extending the Camera In Hand Metaphor Haptic Camera Manipulation: Extending the Camera In Hand Metaphor Joan De Boeck, Karin Coninx Expertise Center for Digital Media Limburgs Universitair Centrum Wetenschapspark 2, B-3590 Diepenbeek, Belgium

More information

Haptic control in a virtual environment

Haptic control in a virtual environment Haptic control in a virtual environment Gerard de Ruig (0555781) Lourens Visscher (0554498) Lydia van Well (0566644) September 10, 2010 Introduction With modern technological advancements it is entirely

More information

The perception of linear self-motion

The perception of linear self-motion Final draft of (2005) paper published in B. E. Rogowitz, T. N. Pappas, S. J. Daly (Eds.) "Human Vision and Electronic Imaging X", proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol 5666 (pp. 503-514).

More information

Max Planck Institut für biologische Kybernetik. Spemannstraße Tübingen Germany

Max Planck Institut für biologische Kybernetik. Spemannstraße Tübingen Germany MP Max Planck Institut für biologische Kybernetik Spemannstraße 38 7076 Tübingen Germany Technical Report o. 087 The Role of Geographical Slant in Virtual Environment avigation Sibylle D. Steck 1 & Horst

More information

A neuronal structure for learning by imitation. ENSEA, 6, avenue du Ponceau, F-95014, Cergy-Pontoise cedex, France. fmoga,

A neuronal structure for learning by imitation. ENSEA, 6, avenue du Ponceau, F-95014, Cergy-Pontoise cedex, France. fmoga, A neuronal structure for learning by imitation Sorin Moga and Philippe Gaussier ETIS / CNRS 2235, Groupe Neurocybernetique, ENSEA, 6, avenue du Ponceau, F-9514, Cergy-Pontoise cedex, France fmoga, gaussierg@ensea.fr

More information

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION 4 & 5 SEPTEMBER 2008, UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA, SPAIN MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL

More information

+ - X, Y. Signum of Laplacian of Gaussian. Original X, Y X, Y DIGITIZER. Update stored image LIVE IMAGE STORED IMAGE. LoG FILTER.

+ - X, Y. Signum of Laplacian of Gaussian. Original X, Y X, Y DIGITIZER. Update stored image LIVE IMAGE STORED IMAGE. LoG FILTER. Real-Time Video Mosaicking of the Ocean Floor Richard L. Marks Stephen M. Rock y Michael J. Lee z Abstract This research proposes a method for the creation of real-time video mosaics of the ocean oor.

More information

Gravitational acceleration as a cue for absolute size and distance?

Gravitational acceleration as a cue for absolute size and distance? Perception & Psychophysics 1996, 58 (7), 1066-1075 Gravitational acceleration as a cue for absolute size and distance? HEIKO HECHT Universität Bielefeld, Bielefeld, Germany MARY K. KAISER NASA Ames Research

More information

Path completion after haptic exploration without vision: Implications for haptic spatial representations

Path completion after haptic exploration without vision: Implications for haptic spatial representations Perception & Psychophysics 1999, 61 (2), 220-235 Path completion after haptic exploration without vision: Implications for haptic spatial representations ROBERTA L. KLATZKY Carnegie Mellon University,

More information

A Road Traffic Noise Evaluation System Considering A Stereoscopic Sound Field UsingVirtual Reality Technology

A Road Traffic Noise Evaluation System Considering A Stereoscopic Sound Field UsingVirtual Reality Technology APCOM & ISCM -4 th December, 03, Singapore A Road Traffic Noise Evaluation System Considering A Stereoscopic Sound Field UsingVirtual Reality Technology *Kou Ejima¹, Kazuo Kashiyama, Masaki Tanigawa and

More information

The ground dominance effect in the perception of 3-D layout

The ground dominance effect in the perception of 3-D layout Perception & Psychophysics 2005, 67 (5), 802-815 The ground dominance effect in the perception of 3-D layout ZHENG BIAN and MYRON L. BRAUNSTEIN University of California, Irvine, California and GEORGE J.

More information

Perception of scene layout from optical contact, shadows, and motion

Perception of scene layout from optical contact, shadows, and motion Perception, 2004, volume 33, pages 1305 ^ 1318 DOI:10.1068/p5288 Perception of scene layout from optical contact, shadows, and motion Rui Ni, Myron L Braunstein Department of Cognitive Sciences, University

More information

First steps with a rideable computer

First steps with a rideable computer First steps with a rideable computer Robert S. Allison 2, Laurence R. Harris 1 3, Michael Jenkin 2, Greg Pintilie 2, Fara Redlick 3, Daniel C. Zikovitz 1 3 The Centre for Vision Research, and Departments

More information

Chapter 1 Virtual World Fundamentals

Chapter 1 Virtual World Fundamentals Chapter 1 Virtual World Fundamentals 1.0 What Is A Virtual World? {Definition} Virtual: to exist in effect, though not in actual fact. You are probably familiar with arcade games such as pinball and target

More information

Omni-Directional Catadioptric Acquisition System

Omni-Directional Catadioptric Acquisition System Technical Disclosure Commons Defensive Publications Series December 18, 2017 Omni-Directional Catadioptric Acquisition System Andreas Nowatzyk Andrew I. Russell Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture

Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 4, APRIL 2012 555 Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture Evan A.

More information

IV: Visual Organization and Interpretation

IV: Visual Organization and Interpretation IV: Visual Organization and Interpretation Describe Gestalt psychologists understanding of perceptual organization, and explain how figure-ground and grouping principles contribute to our perceptions Explain

More information

Perceiving binocular depth with reference to a common surface

Perceiving binocular depth with reference to a common surface Perception, 2000, volume 29, pages 1313 ^ 1334 DOI:10.1068/p3113 Perceiving binocular depth with reference to a common surface Zijiang J He Department of Psychological and Brain Sciences, University of

More information

Vibrations in dynamic driving simulator: Study and implementation

Vibrations in dynamic driving simulator: Study and implementation Vibrations in dynamic driving simulator: Study and implementation Jérémy Plouzeau, Damien Paillot, Baris AYKENT, Frédéric Merienne To cite this version: Jérémy Plouzeau, Damien Paillot, Baris AYKENT, Frédéric

More information

Interactive Art. ~ division of expanded media ~

Interactive Art. ~ division of expanded media ~ Interactive Art Interface Design Computer Vision Sensors Actuators Software as art Max/MSP/Jitter Processing Arduino Immersive 3D Stereoscopic Vision Embodiment Game studies Action in Perception Augmented

More information

On Contrast Sensitivity in an Image Difference Model

On Contrast Sensitivity in an Image Difference Model On Contrast Sensitivity in an Image Difference Model Garrett M. Johnson and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester New

More information

Unit IV: Sensation & Perception. Module 19 Vision Organization & Interpretation

Unit IV: Sensation & Perception. Module 19 Vision Organization & Interpretation Unit IV: Sensation & Perception Module 19 Vision Organization & Interpretation Visual Organization 19-1 Perceptual Organization 19-1 How do we form meaningful perceptions from sensory information? A group

More information

Enhancing 3D Audio Using Blind Bandwidth Extension

Enhancing 3D Audio Using Blind Bandwidth Extension Enhancing 3D Audio Using Blind Bandwidth Extension (PREPRINT) Tim Habigt, Marko Ðurković, Martin Rothbucher, and Klaus Diepold Institute for Data Processing, Technische Universität München, 829 München,

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Journal of Experimental

More information

Science on the Fly. Preview. Autonomous Science for Rover Traverse. David Wettergreen The Robotics Institute Carnegie Mellon University

Science on the Fly. Preview. Autonomous Science for Rover Traverse. David Wettergreen The Robotics Institute Carnegie Mellon University Science on the Fly Autonomous Science for Rover Traverse David Wettergreen The Robotics Institute University Preview Motivation and Objectives Technology Research Field Validation 1 Science Autonomy Science

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 9: Motion perception Course Information 2 Class web page: http://cogsci.ucsd.edu/ desa/101a/index.html

More information

BERNHARD E. RIECKE PUBLICATIONS 1

BERNHARD E. RIECKE PUBLICATIONS 1 BERNHARD E. RIECKE 1 Refereed papers Submitted Bizzocchi, L., Belgacem, B.Y., Quan, B., Suzuki, W., Barheri, M., Riecke, B.E. (submitted) Re:Cycle - a Generative Ambient Video Engine, DAC09 Meilinger,

More information

On Contrast Sensitivity in an Image Difference Model

On Contrast Sensitivity in an Image Difference Model On Contrast Sensitivity in an Image Difference Model Garrett M. Johnson and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester New

More information

Proprioception & force sensing

Proprioception & force sensing Proprioception & force sensing Roope Raisamo Tampere Unit for Computer-Human Interaction (TAUCHI) School of Information Sciences University of Tampere, Finland Based on material by Jussi Rantala, Jukka

More information

Perceptual Characters of Photorealistic See-through Vision in Handheld Augmented Reality

Perceptual Characters of Photorealistic See-through Vision in Handheld Augmented Reality Perceptual Characters of Photorealistic See-through Vision in Handheld Augmented Reality Arindam Dey PhD Student Magic Vision Lab University of South Australia Supervised by: Dr Christian Sandor and Prof.

More information

PC1141 Physics I Standing Waves in String

PC1141 Physics I Standing Waves in String PC1141 Physics I Standing Waves in String 1 Purpose Determination the length of the wire L required to produce fundamental resonances with given frequencies Demonstration that the frequencies f associated

More information

The Matrix Has You. Realizing Slow Motion in Full-Body Virtual Reality

The Matrix Has You. Realizing Slow Motion in Full-Body Virtual Reality The Matrix Has You Realizing Slow Motion in Full-Body Virtual Reality Michael Rietzler Institute of Mediainformatics Ulm University, Germany michael.rietzler@uni-ulm.de Florian Geiselhart Institute of

More information

Visual Physics Lab Project 1

Visual Physics Lab Project 1 Page 1 Visual Physics Lab Project 1 Objectives: The purpose of this Project is to identify sources of error that arise when using a camera to capture data and classify them as either systematic or random

More information

Illusory size-speed bias: Could this help explain motorist collisions with railway trains and other large vehicles?

Illusory size-speed bias: Could this help explain motorist collisions with railway trains and other large vehicles? Illusory size-speed bias: Could this help explain motorist collisions with railway trains and other large vehicles? ª, H. E., Perrone b, J. A., Isler b, R. B. & Charlton b, S. G. ªSchool of Psychology,

More information

Speed Control of a Pneumatic Monopod using a Neural Network

Speed Control of a Pneumatic Monopod using a Neural Network Tech. Rep. IRIS-2-43 Institute for Robotics and Intelligent Systems, USC, 22 Speed Control of a Pneumatic Monopod using a Neural Network Kale Harbick and Gaurav S. Sukhatme! Robotic Embedded Systems Laboratory

More information

Spatio-Temporal Retinex-like Envelope with Total Variation

Spatio-Temporal Retinex-like Envelope with Total Variation Spatio-Temporal Retinex-like Envelope with Total Variation Gabriele Simone and Ivar Farup Gjøvik University College; Gjøvik, Norway. Abstract Many algorithms for spatial color correction of digital images

More information

Scene layout from ground contact, occlusion, and motion parallax

Scene layout from ground contact, occlusion, and motion parallax VISUAL COGNITION, 2007, 15 (1), 4868 Scene layout from ground contact, occlusion, and motion parallax Rui Ni and Myron L. Braunstein University of California, Irvine, CA, USA George J. Andersen University

More information

Arcaid: Addressing Situation Awareness and Simulator Sickness in a Virtual Reality Pac-Man Game

Arcaid: Addressing Situation Awareness and Simulator Sickness in a Virtual Reality Pac-Man Game Arcaid: Addressing Situation Awareness and Simulator Sickness in a Virtual Reality Pac-Man Game Daniel Clarke 9dwc@queensu.ca Graham McGregor graham.mcgregor@queensu.ca Brianna Rubin 11br21@queensu.ca

More information

HRTF adaptation and pattern learning

HRTF adaptation and pattern learning HRTF adaptation and pattern learning FLORIAN KLEIN * AND STEPHAN WERNER Electronic Media Technology Lab, Institute for Media Technology, Technische Universität Ilmenau, D-98693 Ilmenau, Germany The human

More information