Computer-aided Casting Method Design, Simulation and Optimization

Size: px
Start display at page:

Download "Computer-aided Casting Method Design, Simulation and Optimization"

Transcription

1 Silver Jubilee Seminar Institute of Indian Foundrymen (Indore Chapter), 13 March 2008, Indore Computer-aided Casting Method Design, Simulation and Optimization Dr. B. Ravi, Professor Mechanical Engineering Department, Indian Institute of Technology, Bombay Powai, Mumbai Abstract Zero shrinkage defect castings have become a reality owing to computer-aided design, simulation and optimization of their method layout (feeder and gating system). The latest generation software AutoCAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feedaids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. Improvements in graphical user interface and hardware have made the software extremely user-friendly and fast: foundry engineers can learn it within a day, and most castings can be simulated within an hour. Local support ensures successful integration of the technology into the current practices of a foundry. The technological as well as practical aspects of using casting software are illustrated with an industrial case study. Introduction The method layout of a casting is an important aspect of tooling development. It involves decisions regarding part orientation in mold, parting line, cores, cavity layout, feeders, feedaids and gating system. An improper method layout leads to either poor quality or low yield, affecting manufacturing costs and productivity [1]. At present, method design is carried out manually, using 2D drawings of the cast part. Then tooling is fabricated, trial castings are produced in the foundry, and inspected. If sample castings contain defects (such as shrinkage porosity, sand inclusions and blow holes), then the method layout is modified and the process is repeated. Each iteration can take up a week or more, and affects regular production. After 3-4 iterations, the foundry may resort to safe method design (implying low yield), or continue with high rejection rates (implying high scrap or repair cost). This is especially true in the case of large castings, where the cost of a trial can be prohibitive. Assuming a typical foundry develops 20 new castings every year, each casting requiring at least 2 trials, and the average cost of each trial (pattern modification, pouring, inspection, lost production) as Rs.25,000, the economic loss of trials works out to be one million rupees per year per foundry. Further, taking the average difference in the price of a saleable casting and scrap metal as Rs.20/kg, and assuming average rejections in a foundry as 5%, the economic loss caused by defective castings works out to be Rs per ton of production. Given that there are about 5,000 foundries in India producing 7 million tons of castings, the total avoidable economic loss of all Indian foundries works out to be Rs. 12 billion (1200 crores) per year. 1

2 Casting simulation can overcome the above problems: virtual trials do not involve wastage of material, energy and labour, and do not hold up regular production. However, most of the simulation programs available today are not easy-to-use, take as much time as real trials, and their accuracy is affected by material properties and boundary conditions specified by the user. The biggest problem is the preparation of 3D model of the casting along with mold, cores, feeders, gating, etc., which requires CAD skills and takes considerable time for even simple castings. The AutoCAST software developed at I.I.T. Bombay in collaboration with Advanced Reasoning Technologies provides a single integrated easy-to-use environment for casting method design, solid modeling, and simulation [2]. The latest Release 10 incorporates multi-cavity mold layout, automatic modeling and optimization of method design, and a costing model to compare various layouts. Its key features are described here, illustrated by an industrial case study of a steel valve casting. Computer-aided Method Design The main input is the 3D CAD model of an as-cast part (without drilled holes, and with draft, shrinkage and machining allowance). The model file can be obtained from the OEM firm, or created by a local CAD agency. Various display options such as pan, zoom, rotate, transparency, and measure are provided to view and understand the part model (Fig.1). The cast metal and process are selected from a database. Part thickness distribution is displayed for verifying the model and evaluating partprocess compatibility (Fig.2). Fig.1 Part property computation. Fig.2 Part thickness distribution. The method design involves cores, feeders and gating system (Fig.3). Holes in the part model are automatically identified for core design. Even intricate holes can be identified by specifying their openings. The print length is computed based on the core diameter and length (the user can change these if required), and the entire core model is automatically created. The program suggests the number of cavities depending on the mold size (selected from a foundry-specific library), considering both cavity-cavity and cavity-wall gaps. Then the part model is automatically duplicated in the correct locations as per the desired cavity layout. To facilitate feeder location, the program carries out a quick solidification analysis and identifies feeding zones. The user selects a suitable location close the largest feeding zone, and the program automatically computes the dimensions of the feeder using modulus principle (solidification time of feeder slightly more than that of the feeding zone). The feeder model is automatically created; the user 2

3 can change its dimensions or apply feedaids such as insulating sleeves and exothermic covers. More feeders can be created by specifying their positions. The gating channels are created semi-automatically. First, the user indicates gate positions on the part or feeder model. Then the sprue position is decided, and it is connected to the gates through runners. Runner extensions are automatically created. Any type of gating system: horizontal, vertical, investment tree, and direct pouring can be created or modified within minutes. The program also suggests a suitable filling time (which can be changed by the user), accordingly computes the dimensions of the gating channels, and creates their solid model. Fig.3 Method design and model. Fig.4 Melt jet path and mold filling. Automatic Optimization The mold cavity layout, feeders, and gating are automatically optimized within minutes based on quality requirements and other constraints [3]. For mold cavity layout, the primary criterion is the ratio of cast metal to mold material. A high ratio such as 1:2 (cavities too close to each other) can reduce the heat transfer rate and lead to shrinkage porosity defects. A low ratio such as 1:8 (cavities too far from each other) implies poor utilization of mold material and reduced productivity. The program tries out various combinations of mold sizes and number of cavities to find the combination that is closest to the desired value of metal to mold ratio. The gating design is driven by the ideal mold filling time, which depends on the cast metal, casting weight and minimum wall thickness. Fast filling leads to turbulence-related defects (such as mold erosion, air aspiration and inclusions). On the other hand, slow filling may cause defects related to premature solidification (such as cold shuts and misruns). To optimize the gating design, the program simulates the mold filling and computes the total fill time (Fig.4). A simplified layer-by-layer algorithm is used, taking into account the instantaneous velocity through the gates (considering back pressure, if applicable), and the local cross-section of the mold cavity. This gives an accurate estimation of filling time, while being computationally efficient. If the difference between the ideal and simulated filling time is more than a specified limit, the program automatically changes the gating design, creates its solid model, and simulates the mold filling again. The feeder optimization is driven by casting quality, defined as the percentage of casting volume free from shrinkage porosity. The user indicates a target quality. The program automatically changes the feeder dimensions, creates its solid model, carries out solidification simulation, and estimates the casting quality (Fig.5). The solidification simulation employs the Vector Element Method, which computes the temperature gradients (feed metal paths) inside the casting, and follows them in reverse to identify the location and extent of shrinkage porosity (Fig.6). This has been found to be much faster 3

4 than Finite Element Method, without compromising the accuracy of results. The feeder design iterations are carried out until the desired quality is achieved, or the number of iterations exceeding a set limit. The user can accept the results, or reject them and modify the feeder design interactively. Finally, the cost of the casting is computed in terms of amortized tooling, cast metal, other materials (mold, core, etc.), energy, and labour. The user can carry out what-if analysis and compare different method layouts in terms of manufacturing cost. A detailed method report containing the dimensions of part, mold, core, feeders, gating, various results (yield, quality, cost), and an image of the entire casting is automatically generated, which can be printed or stored for future reference (Fig.7). Fig.5 Casting solidification simulation. Fig.6 Feed metal paths (gradients). 4 Fig.7 Cost analysis and method report. The software has been developed for standard Windows XP and Vista computers. The graphical user interface is designed to minimize the learning and operation time, and the user is gently guided through forgotten or wrong steps. Even those without any prior exposure to computers are able to use the software after a single day of training. All steps starting from part model importing to mold, core, feeder and gating system design, simulation and optimization can be completed within one hour for typical castings. Over 40 foundries regularly use the software today, and many others have engaged consulting services for troubleshooting critical castings in all major metals and processes. Direct benefits include at least 50% reduction in casting development time and shrinkage porosity defects. Other benefits include yield improvement, faster quotations, taking up more complex projects, ready reference and training [4]. Continuous interaction and feedback from industry over the last 20 years has helped evolve the software to its current state in terms of features, applications and benefits to the end-users.

5 Conclusion Casting simulation can minimize the wastage of resources required for trial production. In addition, the optimization of quality and yield implies higher value-addition and lower production cost, improving the margins. For widespread application, simulation programs must be fast, reliable, and easy to use. This has been achieved by integrating method design, solid modeling, simulation and optimization in a single software program, and automating many tasks that otherwise require computer skills. In many benchmarking exercises, the software has proven its reliability in predicting internal defects (ex. shrinkage porosity) within minutes, often by senior method engineers who are first time computer users. With payback period as small as 1-3 months, and a network of local support centres, even SME foundries can take advantage of the technology to get their castings right first time, every time, in the shortest possible time. References 1. Ravi B, Metal Casting: Computer-Aided Design and Analysis, Prentice-Hall India, New Delhi, 2005, ISBN Advanced Reasoning Technologies, AutoCAST software, Ravi B, Joshi D, Singh K, Part, Tooling and Method Optimisation Driven by Castability Analysis and Cost Model, Proceedings of 68 th World Foundry Congress, Chennai, Feb Ravi B, Casting Simulation and Optimisation: Benefits, Bottlenecks, and Best Practices, Indian Foundry Journal, 54 (1), Jan

Review Paper on Simulation Based Casting

Review Paper on Simulation Based Casting Review Paper on Simulation Based Casting Vishal S. Jadhao 1, Prof. J.J.Salunke 2 P.G. Student, Department of Mechanical Engineering, DIEMS Engineering College, Station Road, Aurangabad, India 1 Professor,

More information

Swaroop S. Magdum 1, Baliram R. Jadhav 2 1 Student, M.Tech, Department of Mechanical Engineering, RIT, Sakharale, Sangli, Maharashtra, India.

Swaroop S. Magdum 1, Baliram R. Jadhav 2 1 Student, M.Tech, Department of Mechanical Engineering, RIT, Sakharale, Sangli, Maharashtra, India. Design and Development of Casting by Simulation Technique for Yield Improvement in Foundry Industry Swaroop S. Magdum 1, Baliram R. Jadhav 2 1 Student, M.Tech, Department of Mechanical Engineering, RIT,

More information

Numerical Optimization of Grey C.I. Casting using Simulation

Numerical Optimization of Grey C.I. Casting using Simulation IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 47-51 www.iosrjournals.org Numerical Optimization of Grey C.I. Casting using Simulation M. N. Jadhav,

More information

CHAPTER5 5 ZERO DEFECT MANUFACTURING IN THE PRODUCTION OF IMPELLER THROUGH THE APPLICATION OF CAD / CAE

CHAPTER5 5 ZERO DEFECT MANUFACTURING IN THE PRODUCTION OF IMPELLER THROUGH THE APPLICATION OF CAD / CAE 33 CHAPTER5 5 ZERO DEFECT MANUFACTURING IN THE PRODUCTION OF IMPELLER THROUGH THE APPLICATION OF CAD / CAE 5.1 INTRODUCTION In the first place of research, CAD/CAE was applied to achieve ZERO DEFECT MANUFACTURING

More information

Gating Design Optimization for Improvement in Yield of Casting

Gating Design Optimization for Improvement in Yield of Casting Gating Design Optimization for Improvement in Yield of Casting M. N. Jadhav 1, K. H. Inamdar 2 P.G. Student, Department of Mechanical Engineering, Walchand College of Engineering, Sangli, Maharashtra,

More information

OPTIMIZATION OF MULTIGATE RUNNER IN LONG CASTINGS: A SIMULATION APPROACH

OPTIMIZATION OF MULTIGATE RUNNER IN LONG CASTINGS: A SIMULATION APPROACH 913 OPTIMIZATION OF MULTIGATE RUNNER IN LONG CASTINGS: A SIMULATION APPROACH IRFAN AHMAD ASARI (Mechanical engineering department Aligarh Muslim University, Aligarh U.P Email: mechirfaan@gmail.com) The

More information

Study of Sand Casting Gating System

Study of Sand Casting Gating System Study of Sand Casting Gating System Nandagopal M 1, Sivakumar K 2, Senthilkumar G 3, Sengottuvelan M 4 1,3 Associate Professor, Department of Mechanical Engineering, Bannari Amman Institute of Technology,

More information

The Design of Gating System 2. Introduction to the gating system

The Design of Gating System 2. Introduction to the gating system MME 345 Lecture 14 The Design of Gating System 2. Introduction to the gating system Ref: [1] P. Beeley, Foundry Technology, Butterworth-Heinemann, 2001 [2] J. Campbell, Castings, Butterworth-Heinemann,

More information

BMM3643 Manufacturing Processes Metal Casting Processes (Sand Casting)

BMM3643 Manufacturing Processes Metal Casting Processes (Sand Casting) BMM3643 Manufacturing Processes Metal Casting Processes (Sand Casting) by Dr Mas Ayu Bt Hassan Faculty of Mechanical Engineering masszee@ump.edu.my Chapter Synopsis This chapter will expose students to

More information

Solidification Process(1) - Metal Casting Chapter 9,10

Solidification Process(1) - Metal Casting Chapter 9,10 Solidification Process(1) - Metal Casting Chapter 9,10 Seok-min Kim smkim@cau.ac.kr -1- Classification of solidification processes -2- Casting Process in which molten metal flows by gravity or other force

More information

Creating Quality Casting

Creating Quality Casting MME 6203 Lecture 01 Creating Quality Casting AKMB Rashid Professor, Department of MME BUET, Dhaka Topics to discuss today. 1. Defects in casting 2. How to create quality casting 3. Introducing MME 6203

More information

Casting Processes. ver. 2

Casting Processes. ver. 2 Casting Processes ver. 2 1 Types of Parts Made Engine blocks Pipes Jewelry Fire hydrants 2 Complex, 3-D shapes Near net shape Low scrap Relatively quick process Intricate shapes Large hollow shapes No

More information

Use of Casting Simulation and Rapid Prototyping in an Undergraduate Course in Manufacturing Processes

Use of Casting Simulation and Rapid Prototyping in an Undergraduate Course in Manufacturing Processes Paper ID #15374 Use of Casting Simulation and Rapid Prototyping in an Undergraduate Course in Manufacturing Processes Dr. Mathew Schaefer, Milwaukee School of Engineering MATHEW SCHAEFER is Associate Professor

More information

Complete Simulation of High Pressure Die Casting Process

Complete Simulation of High Pressure Die Casting Process Complete Simulation of High Pressure Die Casting Process Matti Sirviö VTT Industrial Systems, Conrod Team, P.O.Box 1702, FIN-02044 VTT, Finland Tel: +358 9 456 5586, Fax: +358 9 460 627, Matti.Sirvio@vtt.fi,

More information

Mid term Review Questions P a g e 1 CASTING

Mid term Review Questions P a g e 1 CASTING Mid term Review Questions P a g e 1 Q1: Define the casting process? CASTING A1: Casting is the process of pouring molten metal into a mould containing a cavity, which represents the required product shape

More information

Casting Process Part 1

Casting Process Part 1 Mech Zone Casting Process Part 1 (SSC JE Mechanical/ GATE/ONGC/SAIL BHEL/HPCL/IOCL) Refractory mold pour liquid metal solidify, remove finish Casting - Process of Producing Metallic Parts by Pouring Molten

More information

4.1.3: Shell Casting.

4.1.3: Shell Casting. 4.1.3: Shell Casting. It is another expandable mold casting type; Shell molding is a casting process in which the mold is a thin shell (typically 9mm) made of sand held together by a thermosetting resin

More information

Chapter 1 Sand Casting Processes

Chapter 1 Sand Casting Processes Chapter 1 Sand Casting Processes Sand casting is a mold based net shape manufacturing process in which metal parts are molded by pouring molten metal into a cavity. The mold cavity is created by withdrawing

More information

Steel Plate in Oil Rig Blowout Preventer Valves

Steel Plate in Oil Rig Blowout Preventer Valves Design Problem Steel Plate in Oil Rig Blowout Preventer Valves Introduction Design for Performance Alloy selection Radii and stress reduction Design for Production Mould method Orientation and cores Controlling

More information

Special Casting Process. 1. Permanent mould casting

Special Casting Process. 1. Permanent mould casting Special Casting Process 1. Permanent mould casting A permanent mold casting makes use of a mold or metallic die which is permanent.molten metal is poured into the mold under gravity only and no external

More information

Guideline. Casting Selection Process. Table of Contents. Delivery Engineered Solutions

Guideline. Casting Selection Process. Table of Contents. Delivery Engineered Solutions Casting Selection Process Guideline Table of Contents Introduction... 2 Factors In Choosing A Process... 2 Category Details & Requirements... 4 Sand casting... 4 Gravity die casting (also known as permanent

More information

Virtual Foundry Modeling and Its Applications

Virtual Foundry Modeling and Its Applications Virtual Foundry Modeling and Its Applications R.G. Chougule 1, M. M. Akarte 2, Dr. B. Ravi 3, 1 Research Scholar, Mechanical Engineering Department, Indian Institute of Technology, Bombay. 2 Department

More information

Addressing Tooling and Casting Requirements at the Design Stage. Whitepaper. Bhaskar Sinha

Addressing Tooling and Casting Requirements at the Design Stage. Whitepaper. Bhaskar Sinha Addressing Tooling and Casting Requirements at the Design Stage Whitepaper Bhaskar Sinha Contents Abstract... 2 Introduction... 2 Casting Guidelines... 2 Wall Thickness... 2 Mold Wall thickness... 3 Ribs...

More information

All About Die Casting

All About Die Casting All About Die Casting FAQ Introduction Die casting is a versatile process for producing engineered metal parts by forcing molten metal under high pressure into reusable steel molds. These molds, called

More information

Year 9 Mathematics Topic 5, Measurement and Geometry Investigation The Feeding of Castings

Year 9 Mathematics Topic 5, Measurement and Geometry Investigation The Feeding of Castings Name: Class: Due date: / / Mark: /48 % Year 9 Mathematics 2014. Topic 5, Measurement and Geometry Investigation The Feeding of Castings You are to investigate the calculation of casting modulus and feeder

More information

Manufacturing: Chapter 3 Casting

Manufacturing: Chapter 3 Casting CHAPTER THREE Metal Casting Casting, shown in Fig. 3.1, is the process of pouring molten metal into a mould containing a cavity, which represents the required product shape. It is one of the most commonly

More information

In the foundry. (continued)

In the foundry. (continued) In the foundry Me by a vertical squeeze-caster - an Ube 350T model used to cast Aluminium. I was involved in refining the conditions used with this machine, in order to get fully-sound castings at large

More information

APPLICATION OF NUMERICAL SIMULATION ON CAST- STEEL TOOTHED PLATE

APPLICATION OF NUMERICAL SIMULATION ON CAST- STEEL TOOTHED PLATE Engineering Review, Vol. 34, Issue 1, 1-6, 2014. 1 APPLICATION OF NUMERICAL SIMULATION ON CAST- STEEL TOOTHED PLATE M. Guofa L. Changyun G. Zeng * School of Materials Science and Engineering, Henan Polytechnic

More information

3D Printing Enabled Rapid Manufacture of Metal Parts at Low Cost Himanshu Khandelwal 1 and B. Ravi 2

3D Printing Enabled Rapid Manufacture of Metal Parts at Low Cost Himanshu Khandelwal 1 and B. Ravi 2 3D Printing Enabled Rapid Manufacture of Metal Parts at Low Cost Himanshu Khandelwal 1 and B. Ravi 2 1 Ph.D. Research Scholar 2 Introduction Metal parts can be manufactured by mainly three routes: subtractive

More information

Integrating Product Optimization and Manufacturability in Graduate Design Course

Integrating Product Optimization and Manufacturability in Graduate Design Course Session 2525 Integrating Product Optimization and Manufacturability in Graduate Design Course Mileta M. Tomovic Purdue University Abstract As CAD/FEA/CAM software tools are becoming increasingly user friendly

More information

METAL CASTING PROCESSES

METAL CASTING PROCESSES METAL CASTING PROCESSES Sand Casting Other Expendable Mold Casting Processes Permanent Mold Casting Processes Foundry Practice Casting Quality Metals for Casting Product Design Considerations Two Categories

More information

Metal Casting Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Metal Casting Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Metal Casting Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 02 Sand Casting Process Lecture 14 Design Of Gating System-I Good

More information

Molds & technologies. die. casting. molds

Molds & technologies. die. casting. molds die casting molds Molds & technologies Company Introduction In last few decades, die casting has been instrumental in reducing the weight of an automobile contributing to fuel efficiency and lighter products.

More information

Metal Casting Processes CHAPTER 11 PART I

Metal Casting Processes CHAPTER 11 PART I Metal Casting Processes CHAPTER 11 PART I Topics Introduction Sand casting Shell-Mold Casting Expendable Pattern Casting Plaster-Mold Casting Introduction Metal-Casting Processes First casting were made

More information

A Method for Developing Uniform Cavity Pressure, Extending Die Life by Integrating SoftSHOT Technology Onto Automotive Transfer Case Die

A Method for Developing Uniform Cavity Pressure, Extending Die Life by Integrating SoftSHOT Technology Onto Automotive Transfer Case Die This paper is subject to revision. Statements and opinions advanced in this paper or during presentation are the author s and are his/her responsibility, not the Association s. The paper has been edited

More information

On the Analysis of Molten Metal Flow through Sprue in Casting Process

On the Analysis of Molten Metal Flow through Sprue in Casting Process On the Analysis of Molten Metal Flow through Sprue in Casting Process Mohd. Imran Ansari and Dr. D.K. Singh Mechanical Engineering Department Madan Mohan Malaviya Engineering College Gorakhpur, India Abstract

More information

Solidification Processes

Solidification Processes CASTING PROCESSES I Lecture Notes by Zulkepli Muhamad Solidification Processes Starting work material is either a liquid or is in a highly plastic condition, and a part is created through solidification

More information

Choosing metalcasting is just the start. This article will help you navigate the casting process palette and find the optimal one for your part.

Choosing metalcasting is just the start. This article will help you navigate the casting process palette and find the optimal one for your part. Make a Selection Choosing metalcasting is just the start. This article will help you navigate the casting process palette and find the optimal one for your part. Design engineers must choose among several

More information

The Design of Gating System 4. Design of gating system elements 1

The Design of Gating System 4. Design of gating system elements 1 MME 345 Lecture 17 The Design of Gating System 4. Design of gating system elements 1 Ref: [1] P. Beeley, Foundry Technology, Butterworth-Heinemann, 2001 [2] J. Campbell, Castings, Butterworth-Heinemann,

More information

CASTING Fundamentals. Prepared by Associate Prof. Mohamed Ahmed Awad Cairo, 2014

CASTING Fundamentals. Prepared by Associate Prof. Mohamed Ahmed Awad Cairo, 2014 CASTING Fundamentals Prepared by Associate Prof. Mohamed Ahmed Awad Cairo, 2014 Casting Definition Casting is the process of pouring molten metal into a mould containing a cavity, which represents the

More information

VIRTUAL PROTOTYPING APPROACH FOR THE DESIGN OF DIECAST FURNITURE COMPONENTS

VIRTUAL PROTOTYPING APPROACH FOR THE DESIGN OF DIECAST FURNITURE COMPONENTS VIRTUAL PROTOTYPING APPROACH FOR THE DESIGN OF DIECAST FURNITURE COMPONENTS Carlo Magistretti - B&B Italia S.p.A. Noverdate, Italy Nicola Gramegna - EnginSoft s.r.l. Padova, Italy ABSTRACT B&B ITALIA is

More information

1.0 PRECISION CASTING PROCESSES

1.0 PRECISION CASTING PROCESSES 1.0 PRECISION CASTING PROCESSES An Introduction to precision casting processes The casting process is without equal as the manufacturing cable of producing fully shaped components of any size in any

More information

Diagnostic approach towards analyzing casting defects-an Industrial case Study

Diagnostic approach towards analyzing casting defects-an Industrial case Study Diagnostic approach towards analyzing casting defects-an Industrial case Study Sidhant Arvind Karnik, Bhushan Shankar Kamble B.Voc (Foundry Technology), Vivekanand College, Kolhapur, Maharashtra, India

More information

Casting. Pattern Making and Molding

Casting. Pattern Making and Molding Casting Pattern Making and Molding Introduction Virtually nothing moves, turns, rolls, or flies without the benefit of cast metal products. The metal casting industry plays a key role in all the major

More information

INTRODUCTION. HareeshaN G Lecturer Department of aeronautical engg. Classification of manufacturing process

INTRODUCTION. HareeshaN G Lecturer Department of aeronautical engg. Classification of manufacturing process INTRODUCTION HareeshaN G Lecturer Department of aeronautical engg Classification of manufacturing process 2 Blore 1 Classification of manufacturing process 3 Types of production systems Mass production

More information

(( Manufacturing )) Fig. (1): Some casting with large or complicated shape manufactured by sand casting.

(( Manufacturing )) Fig. (1): Some casting with large or complicated shape manufactured by sand casting. (( Manufacturing )) Expendable Mold Casting Processes: Types of expendable mold casting are: 1 ) Sand casting. 2 ) Shell molding. 3 ) Vacuum molding. 4 ) Investment casting. 5 ) Expanded polystyrene process.

More information

DATASHEET: Casting with stones already set into waxes by Ajit Menon

DATASHEET: Casting with stones already set into waxes by Ajit Menon The following article reprinted from AJM magazin Stone-in-place casting can offer dramatic savings in stone setting labour costs, once a few common questions are answered. Stone-in-place casting has been

More information

ME0203- Manufacturing Technology

ME0203- Manufacturing Technology ME0203- Manufacturing Technology Casting and Welding Metal Casting A large sand casting weighing 680 kg for an air compressor frame Basic Features n Pattern and Mould A pattern is made of wood or metal,

More information

Principles of Major Manufacturing Processes. Prepared by: Behzad Heidarshenas Ph.D in Manufacturing Processes

Principles of Major Manufacturing Processes. Prepared by: Behzad Heidarshenas Ph.D in Manufacturing Processes Principles of Major Manufacturing Processes Prepared by: Behzad Heidarshenas Ph.D in Manufacturing Processes 1 Overview of Casting Technology Casting is usually performed in a foundry Foundry = factory

More information

Foundry Procedures. Page 1 of 7 R. G. Sparber Copyleft protects this document. Furnace Set Up

Foundry Procedures. Page 1 of 7 R. G. Sparber Copyleft protects this document. Furnace Set Up Foundry Procedures Furnace Set Up 1. Check weather report and only proceed if there is no chance of rain 2. lay out tarp on patio 3. place 3 fire bricks to support furnace 4. put down bottom of furnace

More information

BIG IDEAS. Personal design interests require the evaluation and refinement of skills. Learning Standards

BIG IDEAS. Personal design interests require the evaluation and refinement of skills. Learning Standards Ministry of Education Area of Learning: APPLIED DESIGN, SKILLS, AND TECHNOLOGIES Art Metal and Jewellery Grade 12 BIG IDEAS Products can be designed for life cycle. Personal design interests require the

More information

Permanent Mold Casting Processes. Assoc Prof Zainal Abidin Ahmad Department of Manufacturing & Ind. Eng.

Permanent Mold Casting Processes. Assoc Prof Zainal Abidin Ahmad Department of Manufacturing & Ind. Eng. Assoc Prof Zainal Abidin Ahmad Department of Manufacturing & Ind. Eng. Universiti Teknologi Malaysia Permanent Mold Casting Processes Gravity die casting Pressure die casting Low pressure High pressure

More information

Computer-Aided Design of Tooling for Casting Process

Computer-Aided Design of Tooling for Casting Process Conference on Pattern and Die Manufacturing Technology, Pune, October 7-8, 1999 Computer-Aided Design of Tooling for Casting Process B. Ravi, Associate Professor Department of Mechanical Engineering Indian

More information

Processing of Non- Metals Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Processing of Non- Metals Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Processing of Non- Metals Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 4 Plastics: properties and processing Lecture - 7 Rotational

More information

Alternate method ( Fabrication to Casting )

Alternate method ( Fabrication to Casting ) RESEARCH ARTICLE Alternate method ( Fabrication to Casting ) OPEN ACCESS S. Kishore, UG Scholar S. Manimaran, UG Scholar D. Sanathosh, Assistant professor St Joseph s Institute of Technology St Joseph

More information

CASTING. Dept. of Mech & Mfg. Engg. 1

CASTING. Dept. of Mech & Mfg. Engg. 1 CASTING 1 CASTING It is the process of producing metallic parts by pouring a molten metal in to the mould cavity and allowing the metal to solidify. 2 Casting Process Pattern making Mould making Metal

More information

Discrete Multi-Material Selective Laser Sintering (M 2 SLS): Development for an Application in Complex Sand Casting Core Arrays

Discrete Multi-Material Selective Laser Sintering (M 2 SLS): Development for an Application in Complex Sand Casting Core Arrays Discrete Multi-Material Selective Laser Sintering (M 2 SLS): Development for an Application in Complex Sand Casting Core Arrays Brad Jackson, Kris Wood, Joseph J. Beaman Department of Mechanical Engineering

More information

MN Modelling Objects and Creating Manufacturing Strategy

MN Modelling Objects and Creating Manufacturing Strategy Abstract This document and the accompanying files describe the process of modelling a bell housing jig using the 3D software Catia V5. The manufacturing process by which the bell housing would be created

More information

UTILIZING FLOW SIMULATION IN THE DESIGN PHASE OF A DIE CASTING DIE TO OPTIMIZE DESIGN PARAMETERS

UTILIZING FLOW SIMULATION IN THE DESIGN PHASE OF A DIE CASTING DIE TO OPTIMIZE DESIGN PARAMETERS UTILIZING FLOW SIMULATION IN THE DESIGN PHASE OF A DIE CASTING DIE TO OPTIMIZE DESIGN PARAMETERS WHILE VALIDATING THROUGH EXPERIMENTATION DURING TRIALS 1 P.R.Vispute, 2 D.S.Chaudhari, 3 Swapnil Kulkarni

More information

Two Categories of Metal Casting Processes

Two Categories of Metal Casting Processes Two Categories of Metal Casting Processes 1. Expendable mold processes - mold is sacrificed to remove part Advantage: more complex shapes possible Disadvantage: production rates often limited by time to

More information

Heat and Flow Analysis of High Pressure Die Casting using ProCAST

Heat and Flow Analysis of High Pressure Die Casting using ProCAST Heat and Flow Analysis of High Pressure Die Casting using ProCAST Nagaraj R 1, Asst. Prof. V.A.Girisha 2, Gayathri R 3 1 Mechanical Engineering, R V college of Engineering, Bangalore 560059 India, Email

More information

HIGH PRESSURE MOULDING TECHNOLOGY

HIGH PRESSURE MOULDING TECHNOLOGY HIGH PRESSURE MOULDING TECHNOLOGY Romuald Lemaitre, Pierre Gaillard, Franck Tortey, Paul Woodward franck.tortey@alcatel-lucent.fr Alcatel - Lucent, 536 Quai de La Loire 62100 Calais Abstract: The Optical

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 10: Casting Technology DR. SOTIRIS L. OMIROU CASTING - Basics - A material in a liquid or semisolid form is poured or forced to flow into a die cavity and allowed

More information

Manufacturing Processes - I Dr. D. B. Karunakar Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee

Manufacturing Processes - I Dr. D. B. Karunakar Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Manufacturing Processes - I Dr. D. B. Karunakar Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Module - 2 Lecture - 7 Metal Casting Good morning. We have been

More information

Design of Singe Impression Injection Mould for Lower Bearing Cover

Design of Singe Impression Injection Mould for Lower Bearing Cover Design of Singe Impression Injection Mould for Lower Bearing Cover Vishwanath DC Student, M. Tech Government Tool Room and Training Centre Mysuru, India Abstract Injection moulding is one of the techniques

More information

E-MANUFACTURING ONE-OFF INTRICATE CASTINGS USING RAPID PROTOTYPING TECHNOLOGY

E-MANUFACTURING ONE-OFF INTRICATE CASTINGS USING RAPID PROTOTYPING TECHNOLOGY E-MANUFACTURING ONE-OFF INTRICATE CASTINGS USING RAPID PROTOTYPING TECHNOLOGY D. K. PAL Scientist C, DRDO, Naval College of Engineering, INS Shivaji, Lonavla-410 402, India Dr. B. RAVI Associate Professor,

More information

Troubleshooting Conventional Burnout Phosphate Bonded Investments

Troubleshooting Conventional Burnout Phosphate Bonded Investments Troubleshooting Conventional Burnout Phosphate Bonded Investments Phosphate investments are affected by many variables, but the following generalizations can be made: Thorough mixing insures complete reaction

More information

Investment Casting Design Parameters Guide for Buyer

Investment Casting Design Parameters Guide for Buyer Investment Casting Design Parameters Guide for Buyer The following guidelines and technical information outline what an investment casting is capable of offering. It will cover dimensional and structural

More information

Metal Mould System 1. Introduction

Metal Mould System 1. Introduction Metal Mould System 1. Introduction Moulds for these purposes can be used many times and are usually made of metal, although semi-permanent moulds of graphite have been successful in some instances. The

More information

Special Casting. By S K Mondal

Special Casting. By S K Mondal Special Casting By S K Mondal Shell Moulding The sand is mixed with a thermosetting resin is allowed to come in contact with a heated metal pattern (200 0 C). A skin (shell) of about 3.5 mm of sand and

More information

INJECTION MOULDING OF PLASTICS INJECTION MOULDING

INJECTION MOULDING OF PLASTICS INJECTION MOULDING INJECTION MOULDING OF PLASTICS INJECTION MOULDING The Material Hopper The Barrel/Cylinder heating system The Barrel/Cylinder and Screw Adhesion Abrasion Corrosion Datamination The Screw Drive System The

More information

Multiple-Use-Mold Casting Processes

Multiple-Use-Mold Casting Processes Multiple-Use-Mold Casting Processes Chapter 13 13.1 Introduction In expendable mold casting, a separate mold is produced for each casting Low production rate for expendable mold casting If multiple-use

More information

Manufacturing Processes - I Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Processes - I Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Processes - I Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Lecture - 5 Metal Casting Good morning. In the earlier episodes,

More information

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Casting

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Casting Copyright 1999 Society of Manufacturing Engineers --- 1 --- FUNDAMENTAL MANUFACTURING PROCESSES Casting SCENE 1. CG: FBI warning white text centered on black to blue gradient SCENE 2. CG: disclaimer white

More information

Assessment Blueprint AMBA Master Moldmaker Certification

Assessment Blueprint AMBA Master Moldmaker Certification Assessment Blueprint Test Code: 8281 Version: 01 Specific Competencies and Skills Tested in this Assessment: Advanced Planning and Review Redline a mold design Identify mold manufacturing cost issues Mold

More information

Gastrow Injection Molds

Gastrow Injection Molds Paul Unger (Ed.) Gastrow Injection Molds Sample Chapter 1: Principles of Mold Design ISBNs 978-1-56990-402-2 1-56990-402-2 HANSER Hanser Publishers, Munich Hanser Publications, Cincinnati 1.1 Types of

More information

Manufacturing Processes - I Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Processes - I Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Processes - I Dr. D. B. Karunakar Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Lecture - 4 Module 2 Metal Casting Good morning, Metal casting,

More information

Lesson 2 Understanding Turning Center Speeds and Feeds

Lesson 2 Understanding Turning Center Speeds and Feeds Lesson 2 Understanding Turning Center Speeds and Feeds Speed and feed selection is one of the most important basic-machining-practice-skills a programmer must possess. Poor selection of spindle speed and

More information

Casting Process Lec byprof. A.Chandrashekhar

Casting Process Lec byprof. A.Chandrashekhar Casting Process Lec 18-20 byprof. A.Chandrashekhar Introduction casting may be defined as a metal object obtained by pouring molten metal in to a mould and allowing it to solidify. Casting process is

More information

Defects but No Failures. By R. G. Sparber. Copyleft protects this article. 12/15/2007

Defects but No Failures. By R. G. Sparber. Copyleft protects this article. 12/15/2007 Defects but No Failures By R. G. Sparber Copyleft protects this article. 12/15/2007 A defect is when something does not turn out the way you wanted. A failure is when you don't learn from the experience.

More information

ADVANECES IN CASTING. Presented by: M K PODDAR M.Tech (Student) Manufacturing engg. NIT Warangal

ADVANECES IN CASTING. Presented by: M K PODDAR M.Tech (Student) Manufacturing engg. NIT Warangal ADVANECES IN CASTING Presented by: M K PODDAR M.Tech (Student) Manufacturing engg. NIT Warangal http://ajourneywithtime.weebly.com CONTENTS Introduction Conventional casting process Advances & recent development

More information

OET-010 Manufacturing Processes TAG Rubric COURSE OUTLINE

OET-010 Manufacturing Processes TAG Rubric COURSE OUTLINE OET-010 Manufacturing Processes TAG Rubric COURSE OUTLINE MET Objective SURVEY OF MANUFACTURING PROCESSES INSTRUCTOR: STEVE SYKES Mon/Wed 2:30PM 5:15PM OFFICE: 778-7946 (Room 434) TEXT: MODERN MANUFACTURING

More information

A critical review on sand casting technology

A critical review on sand casting technology A critical review on sand casting technology DR. T.R. VIJAYARAM Prof., SMBS VIT University S and casting technology also known as sand molded casting process. It is a metal casting process characterized

More information

Investment Casting with FDM Patterns

Investment Casting with FDM Patterns TECHNICAL APPLICATION GUIDE Investment Casting with FDM Patterns Investment casting produces ferrous and non-ferrous metal parts with excellent surface finish and dimensional accuracy. This manufacturing

More information

B.1 Die Solder Reduction

B.1 Die Solder Reduction B.1 Die Solder Reduction Patrick Hogan (MS Candidate Industrial Intern) Advisors: Diran Apelian, Joe Bigelow Sponsored by Contech LLC Introduction Die soldering is a die casting processing problem, which

More information

Address for Correspondence

Address for Correspondence Research Paper USING FLOW SIMULATION AS A TOOL FOR DEPLOYING ANALYTICAL METHODOLOGY TO DETERMINE THE MOST SUITABLE PARAMETERS FOR DESIGN FOR A DIE CASTING DIE 1 Swati Sambhajirao Patil (Sathe), 2 D.G.Kumbhar,

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing Materials & Processes in Manufacturing ME 151 Chapter 15 Multiple Use Mold Casting Processes 1 Introduction Expendable Molds - melting point materials and castings General shortcomings of the expendable-mold

More information

Design and Develop New Coupling System in Injection Molding Machine to Improve Screw Life: A Review

Design and Develop New Coupling System in Injection Molding Machine to Improve Screw Life: A Review Design and Develop New Coupling System in Injection Molding Machine to Improve Screw Life: A Review Abstract Ganesh K.Mali Department of Mechanical Design Engineering, V.V.P.I.ET, Solapur University, India

More information

3D Systems Guide to Prototyping Die Cast Parts

3D Systems Guide to Prototyping Die Cast Parts 3D Systems Guide to Prototyping Die Cast Parts Tom Mueller 3D Systems May 2013 Table of Contents Introduction... 3 Why should I prototype?... 4 What are the options for Prototyping?... 5 Which should I

More information

Selecting Injection Molds

Selecting Injection Molds Selecting Injection Molds Herbert Rees, Bruce Catoen Weighing Cost vs Productivity ISBN 3-446-40308-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40308-6 sowie im

More information

7 WAYS TO IMPROVE YOUR DIE CAST COMPONENTS

7 WAYS TO IMPROVE YOUR DIE CAST COMPONENTS www.dynacast.com 7 WAYS TO IMPROVE YOUR DIE CAST COMPONENTS Design for manufacturing (DFM) is a core methodology that ensures your die cast parts perform to specification and require the minimum of secondary

More information

DIRECT METAL LASER SINTERING DESIGN GUIDE

DIRECT METAL LASER SINTERING DESIGN GUIDE DIRECT METAL LASER SINTERING DESIGN GUIDE www.nextlinemfg.com TABLE OF CONTENTS Introduction... 2 What is DMLS?... 2 What is Additive Manufacturing?... 2 Typical Component of a DMLS Machine... 2 Typical

More information

Know your Investment Casting Process November 2006

Know your Investment Casting Process November 2006 Know your Investment Casting Process November 2006 2 In order to remain competitive in the world market you need to continually ask yourself: What else can I do to stay ahead? 3 Where else in my process

More information

Method Engineering & Process Modelling

Method Engineering & Process Modelling Technical Workshop for Foundry Engineers Method Engineering & Process Modelling May 12 & 13, 2015 The University of Sheffield AMRC Knowledge Transfer Centre Sheffield Rotherham, UK Hosted by Castings Technology

More information

600 Cannonball Lane O Fallon, MO Bruce Willson.

600 Cannonball Lane O Fallon, MO Bruce Willson. 600 Cannonball Lane O Fallon, MO 63366 Bruce Willson http://www.ofalloncasting.com/ Definition of an Engineer o Someone who knows almost everything o About almost nothing 70 95% of total Product Cost is

More information

INTEGRATED DESIGN & TEST

INTEGRATED DESIGN & TEST National Instruments PCB Austin 2008 INTEGRATED DESIGN & TEST Vincent Accardi General Manager National Instrument Electronics Workbench Group ni.com/multisim 1 National Instruments Electronics Workbench

More information

Advantages of the Casting Process

Advantages of the Casting Process Advantages of the Casting Process The casting process has nearly unlimited flexibility compared to other manufacturing processes and is excellent for optimizing designs based on performance and weight

More information

Guide to Prototyping. Die Cast Parts. Applications and Technologies of Die Cast Prototyping

Guide to Prototyping. Die Cast Parts. Applications and Technologies of Die Cast Prototyping Guide to Prototyping Die Cast Parts Applications and Technologies of Die Cast Prototyping Table of Contents 1 Introduction 3 2 Why Should I Prototype? 4 3 What are the Options for Prototyping 5 Which Should

More information

Recommended Burnout Process and Casting Guide

Recommended Burnout Process and Casting Guide FORMLABS APPLICATION GUIDE: Recommended Burnout Process and Casting Guide Use Formlabs Castable Resin to produce detailed fine jewelry through the investment casting process. Developed specifically with

More information