Name Date Class Period. 5.2 Exploring Properties of Perpendicular Bisectors


 Jessie Norman
 1 years ago
 Views:
Transcription
1 Name Date Class Period Activity B 5.2 Exploring Properties of Perpendicular Bisectors MATERIALS QUESTION EXPLORE 1 geometry drawing software If a point is on the perpendicular bisector of a segment, is it equidistant from the endpoints of the segment? Investigate properties of a perpendicular bisector STEP 1 Draw a line segment and perpendicular bisector Draw and label AB horizontally on the screen. Draw the perpendicular bisector of AB. Label the point of intersection of the bisector and AB as C. Locate and label a point D on the perpendicular bisector. STEP 2 Draw line segments Draw DB and DA. Measure DB and DA. Record the lengths on the screen. Drag point D along the perpendicular bisector. Note what is happening to the lengths of DB and DA. DRAW CONCLUSIONS Use your observations to complete these exercises Complete the definition of a perpendicular bisector: If DC is the perpendicular bisector of BA, then DCA and DCB are, and BC and CA are. Suppose D is a point on the perpendicular bisector of AB. What can you conclude about AD and BD? 3. If a point is on the perpendicular bisector of a segment, the distances from the point to the endpoints of the segment?. EXPLORE 2 Construct a perpendicular bisector STEP 1 Draw a line segment and point Start a new construction. Draw AB horizontally on the screen. Draw and label a point E above AB. Steps 1 and 2 1 of 5
2 STEP 2 CONSTRUCT equal LINE SEGMENTS Measure AE and BE. Record the lengths on the screen. Drag point E until BE and AE are equal. STEP 3 Construct equal line segments Step 3 Draw and label a point F below AB. Measure the length of FA and FB. Record their lengths on the screen. Drag point F until FA and FB are equal. STEP 4 Complete the construction Draw segment FE. Label the point of intersection of AB and FE point G. STEP 5 Measure line segments and angles Steps 4 and 5 Complete the table below. Measurement EGA EGB GA GB DRAW CONCLUSIONS Use your observations to answer these exercises 4. Name the perpendicular bisector of AB Explain your reasoning. 5. If EA = EB, then E is on the of AB. 6. If FA = FB, then F is on the of AB. 7. If a point is equidistant from the endpoints of a segment, then the point is on the of the segment. 2 of 5
3 Answer Key B EXPLORE 1 Investigate properties of a perpendicular bisector STEP 2 Draw line segments The lengths of DB and DA remain congruent when point D is dragged. DRAW CONCLUSIONS 3. right angles; congruent They are congruent. The distances are equal EXPLORE 2 Construct a perpendicular bisector STEP 5 Measure line segments and angles Answers will vary. DRAW CONCLUSIONS 4. EF is the perpendicular bisector of AB because it is perpendicular to AB at the midpoint of AB. 5. perpendicular bisector 6. perpendicular bisector 7. perpendicular bisector 3 of 5
4 Teacher Notes ACTIVITY PREPARATION AND MATERIALS Geometry drawing software on a graphing calculator or computer Overhead projector and transparencies (optional) It is not necessary that each student have a calculator or computer. This activity can be done in pairs. ACTIVITY MANAGEMENT You may limit the time the activity takes by only doing one of the two Explores. Students will need to know how to use the geometry drawing software to draw and measure line segments, draw a perpendicular bisector, and select and move points. Common Error In Explore 1, it is important the point D is constructed on the perpendicular bisector. Students should not create a point and move it onto the perpendicular bisector. 4 of 5
5 Activity and Closure Questions Place the diagram below on the board or overhead and ask the following question. In the diagram, XZ is the perpendicular bisector of YT. List all valid statements you can make. Answer: XZ YT, XZY = XZT = 90, YZ = ZT, Z is the midpoint of YT, Y X = XT, Δ XYT is isosceles, Δ YXZ Δ TXZ, YXZ = TXZ, XYZ = XZT, Δ XYZ is a right triangle, Δ XZT is a right triangle Place the diagram below on the board or overhead and ask the following questions. a. If RH = RN then R is on the of H N. Answer: perpendicular bisector b. If HJ = J N then J is on the of H N. Answer: perpendicular bisector 3. Explain how Exercises 3 and 7 are related. Answer: They are converses of each other LESSON TRANSITION In Lesson 5.2, the perpendicular bisector theorem and its converse are introduced. This activity is designed to introduce the theorem and its converse. Students will use the theorem and its converse to solve algebraic equations. In addition, students will investigate the point of concurrency of the perpendicular bisectors of a triangle. 5 of 5
9.3 Properties of Chords
9.3. Properties of Chords www.ck12.org 9.3 Properties of Chords Learning Objectives Find the lengths of chords in a circle. Discover properties of chords and arcs. Review Queue 1. Draw a chord in a circle.
More informationMath 3 Geogebra Discovery  Equidistance Decemeber 5, 2014
Math 3 Geogebra Discovery  Equidistance Decemeber 5, 2014 Today you and your partner are going to explore two theorems: The Equidistance Theorem and the Perpendicular Bisector Characterization Theorem.
More informationObjective: Use a compass and straight edge to construct congruent segments and angles.
CONSTRUCTIONS Objective: Use a compass and straight edge to construct congruent segments and angles. Introduction to Constructions Constructions: The drawing of various shapes using only a pair of compasses
More informationUsing inductive reasoning and conjectures Student Activity Sheet 2; use with Exploring The language of geometry
1. REINFORCE Find a geometric representation for the following sequence of numbers. 3, 4, 5, 6, 7, 2. What are the three undefined terms in geometry? 3. Write a description of a point. How are points labeled?
More informationParallel and Perpendicular Lines on the Coordinate Plane
Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane 1.5 Learning Goals Key Term In this lesson, you will: Determine whether lines are parallel. Identify and write the
More informationProperties of Chords
Properties of Chords Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org
More informationConstructing Perpendicular and Parallel Lines. Adapted from Walch Education
Constructing Perpendicular and Adapted from Walch Education Perpendicular Lines and Bisectors Perpendicular lines are two lines that intersect at a right angle (90 ). A perpendicular line can be constructed
More informationGeometry Topic 4 Quadrilaterals and Coordinate Proof
Geometry Topic 4 Quadrilaterals and Coordinate Proof MAFS.912.GCO.3.11 In the diagram below, parallelogram has diagonals and that intersect at point. Which expression is NOT always true? A. B. C. D. C
More informationDATE PERIOD. Lesson Reading Guide. Line and Angle Relationships
NAME DATE PERIOD Lesson Reading Guide Get Ready for the Lesson Read the introduction at the top of page 306 in your textbook. Write your answers below. 1. Suppose that the measure of angles 4 and 6 are
More informationFind the coordinates of the midpoint of a segment having the given endpoints.
G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one and twodimensional coordinate systems to
More informationName Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines
Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines Two lines are if they are coplanar and do not intersect. Skew lines. Two
More informationChapter 11: Constructions and Loci
Chapter 11: Section 11.1a Constructing a Triangle given 3 sides (sss) Leave enough room above the line to complete the shape. Do not rub out your construction lines. They show your method. 1 Section 11.1b
More informationConstructions. Unit 9 Lesson 7
Constructions Unit 9 Lesson 7 CONSTRUCTIONS Students will be able to: Understand the meanings of Constructions Key Vocabulary: Constructions Tools of Constructions Basic geometric constructions CONSTRUCTIONS
More information5.3 Angle Bisectors in Triangles
5.3 Angle Bisectors in Triangles Learning Objectives Apply the Angle Bisector Theorem and its converse. Understand concurrency for angle bisectors. Review Queue 1. Construct the angle bisector of an 80
More informationRound and Round.  Circle Theorems 1: The Chord Theorem 
 Circle Theorems 1: The Chord Theorem  A Historic Note The main ideas about plane geometry were developed by Greek scholars during the period between 600 and 300 B.C.E. Euclid established a school of
More information91: Circle Basics GEOMETRY UNIT 9. And. 92: Tangent Properties
91: Circle Basics GEOMETRY UNIT 9 And 92: Tangent Properties CIRCLES Content Objective: Students will be able to solve for missing lengths in circles. Language Objective: Students will be able to identify
More informationS. Stirling Page 1 of 14
3.1 Duplicating Segments and ngles [and riangles] hese notes replace pages 144 146 in the book. You can read these pages for extra clarifications. Instructions for making geometric figures: You can sketch
More informationGeometry SOL G.4 Constructions Name Date Block. Constructions
Geometry SOL G.4 Constructions Mrs. Grieser Name Date Block Constructions Grab your compass and straight edge  it s time to learn about constructions!! On the following pages you will find instructions
More information6.1 Justifying Constructions
Name lass ate 6.1 Justifying onstructions Essential Question: How can you be sure that the result of a construction is valid? Resource Locker Explore 1 Using a Reflective evice to onstruct a erpendicular
More informationTangents and Chords Off On a Tangent
Tangents and Chords SUGGESTED LERNING STRTEGIES: Group Presentation, Think/Pair/Share, Quickwrite, Interactive Word Wall, Vocabulary Organizer, Create Representations, Quickwrite CTIVITY 4.1 circle is
More informationSpecial Right Triangles and Right Triangle Trigonometry
Special Right Triangles and Right Triangle Trigonometry Reporting Category Topic Triangles Investigating special right triangles and right triangle trigonometry Primary SOL G.8 The student will solve realworld
More informationONE. angles which I already know
Name Geometry Period ONE Ticket In Date Ticket In the Door! After watching the assigned video and learning how to construct a perpendicular line through a point, you will perform this construction below
More informationCONSTRUCTION #1: Segment Copy
CONSTRUCTION #1: Segment Copy Objective: Given a line segment, construct a line segment congruent to the given one. Procedure: After doing this Your work should look like this Start with a line segment
More informationPreTest. Name Date. 1. Can skew lines be coplanar? Explain.
PreTest Name Date 1. Can skew lines be coplanar? Explain. 2. Point D is at the center of a circle. Points A, B, and C are on the same arc of the circle. What can you say about the lengths of AD, BD, and
More informationACT Coordinate Geometry Review
ACT Coordinate Geometry Review Here is a brief review of the coordinate geometry concepts tested on the ACT. Note: there is no review of how to graph an equation on this worksheet. Questions testing this
More informationParallel and Perpendicular Lines on the Coordinate Plane
Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane 1.5 Learning Goals Key Term In this lesson, you will: Determine whether lines are parallel. Identify and write the
More informationLesson 10.1 Skills Practice
Lesson 10.1 Skills Practice Location, Location, Location! Line Relationships Vocabulary Write the term or terms from the box that best complete each statement. intersecting lines perpendicular lines parallel
More informationGeometry Vocabulary Book
Geometry Vocabulary Book Units 24 Page 1 Unit 2 General Geometry Point Characteristics: Line Characteristics: Plane Characteristics: RELATED POSTULATES: Through any two points there exists exactly one
More informationExploring the Pythagorean Theorem
Exploring the Pythagorean Theorem Lesson 11 Mathematics Objectives Students will analyze relationships to develop the Pythagorean Theorem. Students will find missing sides in right triangles using the
More informationAngles formed by Transversals
Section 31: Parallel Lines and Transversals SOL: None Objectives: Identify the relationships between two lines or two planes Name angles formed by a pair of lines and a transversal Vocabulary: Parallel
More informationMaterials: Computer lab or set of calculators equipped with Cabri Geometry II and lab worksheet.
Constructing Perpendiculars Lesson Summary: Students will complete the basic compass and straight edge constructions commonly taught in first year high school Geometry. Key Words: perpendicular, compass,
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 17, 2017 12:30 to 3:30 p.m., only Student Name: School Name: The possession or use of any communications
More informationTable of Contents. Constructions Day 1... Pages 15 HW: Page 6. Constructions Day 2... Pages 714 HW: Page 15
CONSTRUCTIONS Table of Contents Constructions Day 1...... Pages 15 HW: Page 6 Constructions Day 2.... Pages 714 HW: Page 15 Constructions Day 3.... Pages 1621 HW: Pages 2224 Constructions Day 4....
More informationLesson 9.1 Assignment
Lesson 9.1 Assignment Name Date Earth Measure Introduction to Geometry and Geometric Constructions Use a compass and a straightedge to complete Questions 1 and 2. 1. Construct a flower with 12 petals by
More informationLet s Get This Started!
Lesson 1.1 Assignment 1 Name Date Let s Get This Started! Points, Lines, Planes, Rays, and Line Segments 1. Identify each of the following in the figure shown. a. Name all points. W X p b. Name all lines.
More informationUNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 3: Constructing Polygons Instruction
rerequisite Skills This lesson requires the use of the following skills: using a compass copying and bisecting line segments constructing perpendicular lines constructing circles of a given radius Introduction
More information2. Here are some triangles. (a) Write down the letter of the triangle that is. rightangled, ... (ii) isosceles. ... (2)
Topic 8 Shapes 2. Here are some triangles. A B C D F E G (a) Write down the letter of the triangle that is (i) rightangled,... (ii) isosceles.... (2) Two of the triangles are congruent. (b) Write down
More informationGeometer s Sketchpad Version 4
Geometer s Sketchpad Version 4 For PC Name: Date: INVESTIGATION: The Pythagorean Theorem Directions: Use the steps below to lead you through the investigation. After each step, be sure to click in the
More informationAlgebra 2. TMT 3 Algebra 2: Student Lesson 2 140
A.1(B) collect and organize data, make and interpret scatterplots, fit the graph of a function to the data, interpret the results, and proceed to model, predict, and make decisions and critical judgments.
More informationProblem of the Month: Between the Lines
Problem of the Month: Between the Lines Overview: In the Problem of the Month Between the Lines, students use polygons to solve problems involving area. The mathematical topics that underlie this POM are
More information1. Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. 1. Begin with line segment XY.
1. onstruct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. 1. egin with line segment. 2. lace the compass at point. djust the compass radius so that it is more
More informationVisa Smart Debit/Credit Certificate Authority Public Keys
CHIP AND NEW TECHNOLOGIES Visa Smart Debit/Credit Certificate Authority Public Keys Overview The EMV standard calls for the use of Public Key technology for offline authentication, for aspects of online
More informationUnit 6: Quadrilaterals
Name: Period: Unit 6: Quadrilaterals Geometry Honors Homework Section 6.1: Classifying Quadrilaterals State whether each statement is true or false. Justify your response. 1. All squares are rectangles.
More informationWhere should Sam and Marla Wilson look for a new apartment that is equidistant from their jobs?
Where should Sam and Marla Wilson look for a new apartment that is equidistant from their jobs? anywhere on B street 1 12.6 Locus: A Set of Points In the warm up, you described the possible locations based
More informationCircles Assignment Answer the following questions.
Answer the following questions. 1. Define constructions. 2. What are the basic tools that are used to draw geometric constructions? 3. What is the use of constructions? 4. What is Compass? 5. What is Straight
More informationTarget 5.4: Use angle properties in triangles to determine unknown angle measurements 5.4: Parallel Lines and Triangles
Unit 5 Parallel and Perpendicular Lines Target 5.1: Classify and identify angles formed by parallel lines and transversals 5.1 a Parallel and Perpendicular lines 5.1b Parallel Lines and its Angle Relationships
More information9.1 and 9.2 Introduction to Circles
Date: Secondary Math 2 Vocabulary 9.1 and 9.2 Introduction to Circles Define the following terms and identify them on the circle: Circle: The set of all points in a plane that are equidistant from a given
More informationLocus Locus. Remarks
4 4. The locus of a point is the path traced out by the point moving under given geometrical condition (or conditions). lternatively, the locus is the set of all those points which satisfy the given geometrical
More informationConstructing Angle Bisectors and Parallel Lines
Name: Date: Period: Constructing Angle Bisectors and Parallel Lines TASK A: 1) Complete the following steps below. a. Draw a circle centered on point P. b. Mark any two points on the circle that are not
More informationG.SRT.B.5: Quadrilateral Proofs
Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org Name: G.SRT.B.5: Quadrilateral Proofs 1 Given that ABCD is a parallelogram, a student wrote the proof below to show that a pair of its
More informationDay 2: Tangram Tune Up Grade 7
Day 2: Tangram Tune Up Grade 7 Minds On... Action! Description Review geometric language. Introduce new geometric terminology. Construct tangram pieces and create 2D composite shapes. Whole Class Reflection
More informationThe Geometer s Sketchpad Unit 1. Meet Geometer s Sketchpad
Trainer/Instructor Notes: Geometer s Sketchpad Training Meet Geometer s Sketchpad The Geometer s Sketchpad Unit 1 Meet Geometer s Sketchpad Overview: Objective: In this unit, participants become familiar
More informationBig Ideas Math: A Common Core Curriculum Geometry 2015 Correlated to Common Core State Standards for High School Geometry
Common Core State s for High School Geometry Conceptual Category: Geometry Domain: The Number System G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment,
More informationUse a proportion to solve the problem. 1) If 5 sandwich rolls cost $0.80, how much will 21 rolls cost? A) $4.36 B) $6.00 C) $3.36 D) $4.
Assignment 6.46.6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use a proportion to solve the problem. ) If 5 sandwich rolls cost $0.80, how
More informationUnit 1 Foundations of Geometry: Vocabulary, Reasoning and Tools
Number of Days: 34 9/5/1710/20/17 Unit Goals Stage 1 Unit Description: Using building blocks from Algebra 1, students will use a variety of tools and techniques to construct, understand, and prove geometric
More informationTangents to Circles. The distance across the circle, through its center, is the diameter of the circle. The diameter is twice the radius.
ircles Tangents to ircles circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. circle with center P is called circle P. The distance from
More informationGeometry by Jurgensen, Brown and Jurgensen Postulates and Theorems from Chapter 1
Postulates and Theorems from Chapter 1 Postulate 1: The Ruler Postulate 1. The points on a line can be paired with the real numbers in such a way that any two points can have coordinates 0 and 1. 2. Once
More informationGeometry  Chapter 6 Review
Class: Date: Geometry  Chapter 6 Review 1. Find the sum of the measures of the angles of the figure. 4. Find the value of x. The diagram is not to scale. A. 1260 B. 900 C. 540 D. 720 2. The sum of the
More informationLesson 3.1 Duplicating Segments and Angles
Lesson 3.1 Duplicating Segments and ngles Name eriod Date In Exercises 1 3, use the segments and angles below. omplete the constructions on a separate piece of paper. S 1. Using only a compass and straightedge,
More informationG.SRT.B.5: Quadrilateral Proofs
Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org Name: G.SRT.B.5: Quadrilateral Proofs 1 Given that ABCD is a parallelogram, a student wrote the proof below to show that a pair of its
More information3 Kevin s work for deriving the equation of a circle is shown below.
June 2016 1. A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which threedimensional object below is generated by this rotation?
More informationMathworks Math Contest (MMC) For Middle School Students October 29, 2013
Mathworks Math Contest (MMC) For Middle School Students October 29, 2013 SCORE (for Mathworks use) STUDENT COVER SHEET Please write in all information neatly and clearly to ensure proper grading. Thank
More informationDate: Period: Quadrilateral Word Problems: Review Sheet
Name: Quadrilateral Word Problems: Review Sheet Date: Period: Geometry Honors Directions: Please answer the following on a separate sheet of paper. Completing this review sheet will help you to do well
More informationTo use properties of perpendicular bisectors and angle bisectors
52 erpendicular and ngle isectors ontent tandards G.O.9 rove theorems about lines and angles... points on a perpendicular bisector of a line segment are exactly those equidistant from the segment s endpoints.
More informationChapter 5: Relationships Within Triangles
Name: Hour: Chapter 5: Relationships Within Triangles GeoGebra Exploration and Extension Project Mr. Kroll 201314 GeoGebra Introduction Activity In this tutorial, you will get used to the basics of GeoGebra.
More information12 Measuring and Constructing Segments. Holt Geometry
12 Measuring and Constructing Segments Objectives Use length and midpoint of a segment. Construct midpoints and congruent segments. Vocabulary coordinate midpoint distance bisect length segment bisector
More informationChallenges from Ancient Greece
Challenges from ncient Greece Mathematical goals Make formal geometric constructions with a variety of tools and methods. Use congruent triangles to justify geometric constructions. Common Core State Standards
More informationWhat s a Widget? EXAMPLE A L E S S O N 1.3
Page 1 of 7 L E S S O N 1.3 What s a Widget? Good definitions are very important in geometry. In this lesson you will write your own geometry definitions. Which creatures in the last group are Widgets?
More information1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k.
HAPTER 14 Vector alculus 1. Vector Fields Definition. A vector field in the plane is a function F(x, y) from R into V, We write F(x, y) = hf 1 (x, y), f (x, y)i = f 1 (x, y)i + f (x, y)j. A vector field
More informationMeasuring and Constructing Angles Going Deeper
Name Class 13 Date Measuring and Constructing ngles Going Deeper Essential question: What tools and methods can you use to copy an angle and bisect an angle? n angle is a figure formed by two rays with
More informationCHAPTER 3. Parallel & Perpendicular lines
CHAPTER 3 Parallel & Perpendicular lines 3.1 Identify Pairs of Lines and Angles Parallel Lines: two lines are parallel if they do not intersect and are coplaner Skew lines: Two lines are skew if they
More informationFSA Geometry EOC Getting ready for. Circles, Geometric Measurement, and Geometric Properties with Equations.
Getting ready for. FSA Geometry EOC Circles, Geometric Measurement, and Geometric Properties with Equations 20142015 Teacher Packet Shared by MiamiDade Schools Shared by MiamiDade Schools MAFS.912.GC.1.1
More informationProblem of the Month: Between the Lines
Problem of the Month: Between the Lines The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
More informationName. Ms. Nong. Due on: Per: Geometry 2 nd semester Math packet # 2 Standards: 8.0 and 16.0
Name FRIDAY, FEBRUARY 24 Due on: Per: TH Geometry 2 nd semester Math packet # 2 Standards: 8.0 and 16.0 8.0 Students know, derive, and solve problems involving the perimeter, circumference, area, volume
More informationGEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Wednesday, August 17, 2016 8:30 to 11:30 a.m., only Student Name: School Name: The
More information5.1. Perpendiculars and Bisectors. What you should learn
age 1 of 8 5.1 erpendiculars and isectors What you should learn GOL 1 Use properties of perpendicular bisectors. GOL 2 Use properties of angle bisectors to identify equal distances, such as the lengths
More informationLesson 3A. Opening Exercise. Identify which dilation figures were created using r = 1, using r > 1, and using 0 < r < 1.
: Properties of Dilations and Equations of lines Opening Exercise Identify which dilation figures were created using r = 1, using r > 1, and using 0 < r < 1. : Properties of Dilations and Equations of
More informationGeometer s Skethchpad 8th Grade Guide to Learning Geometry
Geometer s Skethchpad 8th Grade Guide to Learning Geometry This Guide Belongs to: Date: Table of Contents Using Sketchpad                                        
More informationEuclid s Muse MATERIALS VOCABULARY. area perimeter triangle quadrilateral rectangle line point plane. TIME: 40 minutes
Euclid s Muse In this activity, participants match geometry terms to definitions and definitions to words. MATERIALS Transparency: Euclid s Muse Directions Transparency/Page: Euclid s Muse Transparency/Page:
More informationThe Basics: Geometric Structure
Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 62015 The Basics: Geometric Structure Danielle Kendrick Trinity University Follow
More information1. Write the angles in order from 2. Write the side lengths in order from
Lesson 1 Assignment Triangle Inequalities 1. Write the angles in order from 2. Write the side lengths in order from smallest to largest. shortest to longest. 3. Tell whether a triangle can have the sides
More informationGEOMETRY, MODULE 1: SIMILARITY
GEOMETRY, MODULE 1: SIMILARITY LIST OF ACTIVITIES: The following three activities are in the Sec 01a file: Visual Level: Communication Under the Magnifying Glass Vusi s Photos The activities below are
More informationSESSION THREE AREA MEASUREMENT AND FORMULAS
SESSION THREE AREA MEASUREMENT AND FORMULAS Outcomes Understand the concept of area of a figure Be able to find the area of a rectangle and understand the formula base times height Be able to find the
More informationAnalytic Geometry EOC Study Booklet Geometry Domain Units 13 & 6
DOE Assessment Guide Questions (2015) Analytic Geometry EOC Study Booklet Geometry Domain Units 13 & 6 Question Example Item #1 Which transformation of ΔMNO results in a congruent triangle? Answer Example
More information12th Bay Area Mathematical Olympiad
2th Bay Area Mathematical Olympiad February 2, 200 Problems (with Solutions) We write {a,b,c} for the set of three different positive integers a, b, and c. By choosing some or all of the numbers a, b and
More informationGeometry. Teacher s Guide
Geometry Teacher s Guide WALCH PUBLISHING Table of Contents To the Teacher.......................................................... vi Classroom Management..................................................
More informationUp and Down.  Circle Theorems 2: The Converse of the Chord Theorem 
 Circle Theorems 2: The Converse of the Chord Theorem  Revision Label the circle diagram showing: the circumference the centre a diameter a chord a radius State the Chord Theorem. Checkpoint An Example
More informationGEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Thursday, January 28, 20169:15 a.m. to 12:15 p.m., only The possession or use of any
More informationGrade 4 + DIGITAL. EL Strategies. DOK 14 RTI Tiers 13. Flexible Supplemental K8 ELA & Math Online & Print
Standards PLUS Flexible Supplemental K8 ELA & Math Online & Print Grade 4 SAMPLER Mathematics EL Strategies DOK 14 RTI Tiers 13 1520 Minute Lessons Assessments Consistent with CA Testing Technology
More informationGeometric Constructions
Geometry Name: Part 1: What are Geometric Constructions? Geometric Constructions Go to http://www.mathopenref.com/constructions.html. Answer the following questions. 1. What is a construction? 2. What
More informationAngle Measure and Plane Figures
Grade 4 Module 4 Angle Measure and Plane Figures OVERVIEW This module introduces points, lines, line segments, rays, and angles, as well as the relationships between them. Students construct, recognize,
More informationWarmUp Up Exercises. 1. Find the value of x. ANSWER 32
WarmUp Up Exercises 1. Find the value of x. ANSWER 32 2. Write the converse of the following statement. If it is raining, then Josh needs an umbrella. ANSWER If Josh needs an umbrella, then it is raining.
More informationLesson 16: The Computation of the Slope of a Non Vertical Line
++ Lesson 16: The Computation of the Slope of a Non Vertical Line Student Outcomes Students use similar triangles to explain why the slope is the same between any two distinct points on a non vertical
More informationL7 Constructions 7.1 Construction Introduction Per Date
7.1 Construction Introduction Per Date In pairs, discuss the meanings of the following vocabulary terms. The first two you should attempt to recall from memory, and for the rest you should try to agree
More informationth Grade Test. A. 128 m B. 16π m C. 128π m
1. Which of the following is the greatest? A. 1 888 B. 2 777 C. 3 666 D. 4 555 E. 6 444 2. How many whole numbers between 1 and 100,000 end with the digits 123? A. 50 B. 76 C. 99 D. 100 E. 101 3. If the
More informationMath 7 Notes  Unit 08B (Chapter 5B) Proportions in Geometry
Math 7 Notes  Unit 8B (Chapter B) Proportions in Geometr Sllabus Objective: (6.23) The student will use the coordinate plane to represent slope, midpoint and distance. Nevada State Standards (NSS) limits
More informationUniversity of Houston High School Mathematics Contest Geometry Exam Spring 2016
University of Houston High School Mathematics ontest Geometry Exam Spring 016 nswer the following. Note that diagrams may not be drawn to scale. 1. In the figure below, E, =, = 4 and E = 0. Find the length
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 17, 2017 12:30 to 3:30 p.m., only Student Name: School Name: The possession or use of any communications
More informationStretch lesson: Constructions
29 Stretch lesson: onstructions Stretch objectives efore you start this chapter, mark how confident you feel about each of the statements below: I can construct the perpendicular bisector of a given line.
More informationMeasuring and Drawing Angles and Triangles
NME DTE Measuring and Drawing ngles and Triangles Measuring an angle 30 arm origin base line 0 180 0 If the arms are too short to reach the protractor scale, lengthen them. Step 1: lace the origin of the
More information