Name Date Class Period. 5.2 Exploring Properties of Perpendicular Bisectors

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Name Date Class Period. 5.2 Exploring Properties of Perpendicular Bisectors"

Transcription

1 Name Date Class Period Activity B 5.2 Exploring Properties of Perpendicular Bisectors MATERIALS QUESTION EXPLORE 1 geometry drawing software If a point is on the perpendicular bisector of a segment, is it equidistant from the endpoints of the segment? Investigate properties of a perpendicular bisector STEP 1 Draw a line segment and perpendicular bisector Draw and label AB horizontally on the screen. Draw the perpendicular bisector of AB. Label the point of intersection of the bisector and AB as C. Locate and label a point D on the perpendicular bisector. STEP 2 Draw line segments Draw DB and DA. Measure DB and DA. Record the lengths on the screen. Drag point D along the perpendicular bisector. Note what is happening to the lengths of DB and DA. DRAW CONCLUSIONS Use your observations to complete these exercises Complete the definition of a perpendicular bisector: If DC is the perpendicular bisector of BA, then DCA and DCB are, and BC and CA are. Suppose D is a point on the perpendicular bisector of AB. What can you conclude about AD and BD? 3. If a point is on the perpendicular bisector of a segment, the distances from the point to the endpoints of the segment?. EXPLORE 2 Construct a perpendicular bisector STEP 1 Draw a line segment and point Start a new construction. Draw AB horizontally on the screen. Draw and label a point E above AB. Steps 1 and 2 1 of 5

2 STEP 2 CONSTRUCT equal LINE SEGMENTS Measure AE and BE. Record the lengths on the screen. Drag point E until BE and AE are equal. STEP 3 Construct equal line segments Step 3 Draw and label a point F below AB. Measure the length of FA and FB. Record their lengths on the screen. Drag point F until FA and FB are equal. STEP 4 Complete the construction Draw segment FE. Label the point of intersection of AB and FE point G. STEP 5 Measure line segments and angles Steps 4 and 5 Complete the table below. Measurement EGA EGB GA GB DRAW CONCLUSIONS Use your observations to answer these exercises 4. Name the perpendicular bisector of AB Explain your reasoning. 5. If EA = EB, then E is on the of AB. 6. If FA = FB, then F is on the of AB. 7. If a point is equidistant from the endpoints of a segment, then the point is on the of the segment. 2 of 5

3 Answer Key B EXPLORE 1 Investigate properties of a perpendicular bisector STEP 2 Draw line segments The lengths of DB and DA remain congruent when point D is dragged. DRAW CONCLUSIONS 3. right angles; congruent They are congruent. The distances are equal EXPLORE 2 Construct a perpendicular bisector STEP 5 Measure line segments and angles Answers will vary. DRAW CONCLUSIONS 4. EF is the perpendicular bisector of AB because it is perpendicular to AB at the midpoint of AB. 5. perpendicular bisector 6. perpendicular bisector 7. perpendicular bisector 3 of 5

4 Teacher Notes ACTIVITY PREPARATION AND MATERIALS Geometry drawing software on a graphing calculator or computer Overhead projector and transparencies (optional) It is not necessary that each student have a calculator or computer. This activity can be done in pairs. ACTIVITY MANAGEMENT You may limit the time the activity takes by only doing one of the two Explores. Students will need to know how to use the geometry drawing software to draw and measure line segments, draw a perpendicular bisector, and select and move points. Common Error In Explore 1, it is important the point D is constructed on the perpendicular bisector. Students should not create a point and move it onto the perpendicular bisector. 4 of 5

5 Activity and Closure Questions Place the diagram below on the board or overhead and ask the following question. In the diagram, XZ is the perpendicular bisector of YT. List all valid statements you can make. Answer: XZ YT, XZY = XZT = 90, YZ = ZT, Z is the midpoint of YT, Y X = XT, Δ XYT is isosceles, Δ YXZ Δ TXZ, YXZ = TXZ, XYZ = XZT, Δ XYZ is a right triangle, Δ XZT is a right triangle Place the diagram below on the board or overhead and ask the following questions. a. If RH = RN then R is on the of H N. Answer: perpendicular bisector b. If HJ = J N then J is on the of H N. Answer: perpendicular bisector 3. Explain how Exercises 3 and 7 are related. Answer: They are converses of each other LESSON TRANSITION In Lesson 5.2, the perpendicular bisector theorem and its converse are introduced. This activity is designed to introduce the theorem and its converse. Students will use the theorem and its converse to solve algebraic equations. In addition, students will investigate the point of concurrency of the perpendicular bisectors of a triangle. 5 of 5

9.3 Properties of Chords

9.3 Properties of Chords 9.3. Properties of Chords www.ck12.org 9.3 Properties of Chords Learning Objectives Find the lengths of chords in a circle. Discover properties of chords and arcs. Review Queue 1. Draw a chord in a circle.

More information

Math 3 Geogebra Discovery - Equidistance Decemeber 5, 2014

Math 3 Geogebra Discovery - Equidistance Decemeber 5, 2014 Math 3 Geogebra Discovery - Equidistance Decemeber 5, 2014 Today you and your partner are going to explore two theorems: The Equidistance Theorem and the Perpendicular Bisector Characterization Theorem.

More information

Objective: Use a compass and straight edge to construct congruent segments and angles.

Objective: Use a compass and straight edge to construct congruent segments and angles. CONSTRUCTIONS Objective: Use a compass and straight edge to construct congruent segments and angles. Introduction to Constructions Constructions: The drawing of various shapes using only a pair of compasses

More information

Using inductive reasoning and conjectures Student Activity Sheet 2; use with Exploring The language of geometry

Using inductive reasoning and conjectures Student Activity Sheet 2; use with Exploring The language of geometry 1. REINFORCE Find a geometric representation for the following sequence of numbers. 3, 4, 5, 6, 7, 2. What are the three undefined terms in geometry? 3. Write a description of a point. How are points labeled?

More information

Parallel and Perpendicular Lines on the Coordinate Plane

Parallel and Perpendicular Lines on the Coordinate Plane Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane 1.5 Learning Goals Key Term In this lesson, you will: Determine whether lines are parallel. Identify and write the

More information

Properties of Chords

Properties of Chords Properties of Chords Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Constructing Perpendicular and Parallel Lines. Adapted from Walch Education

Constructing Perpendicular and Parallel Lines. Adapted from Walch Education Constructing Perpendicular and Adapted from Walch Education Perpendicular Lines and Bisectors Perpendicular lines are two lines that intersect at a right angle (90 ). A perpendicular line can be constructed

More information

Geometry Topic 4 Quadrilaterals and Coordinate Proof

Geometry Topic 4 Quadrilaterals and Coordinate Proof Geometry Topic 4 Quadrilaterals and Coordinate Proof MAFS.912.G-CO.3.11 In the diagram below, parallelogram has diagonals and that intersect at point. Which expression is NOT always true? A. B. C. D. C

More information

DATE PERIOD. Lesson Reading Guide. Line and Angle Relationships

DATE PERIOD. Lesson Reading Guide. Line and Angle Relationships NAME DATE PERIOD Lesson Reading Guide Get Ready for the Lesson Read the introduction at the top of page 306 in your textbook. Write your answers below. 1. Suppose that the measure of angles 4 and 6 are

More information

Find the coordinates of the midpoint of a segment having the given endpoints.

Find the coordinates of the midpoint of a segment having the given endpoints. G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to

More information

Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines

Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines Two lines are if they are coplanar and do not intersect. Skew lines. Two

More information

Chapter 11: Constructions and Loci

Chapter 11: Constructions and Loci Chapter 11: Section 11.1a Constructing a Triangle given 3 sides (sss) Leave enough room above the line to complete the shape. Do not rub out your construction lines. They show your method. 1 Section 11.1b

More information

Constructions. Unit 9 Lesson 7

Constructions. Unit 9 Lesson 7 Constructions Unit 9 Lesson 7 CONSTRUCTIONS Students will be able to: Understand the meanings of Constructions Key Vocabulary: Constructions Tools of Constructions Basic geometric constructions CONSTRUCTIONS

More information

5.3 Angle Bisectors in Triangles

5.3 Angle Bisectors in Triangles 5.3 Angle Bisectors in Triangles Learning Objectives Apply the Angle Bisector Theorem and its converse. Understand concurrency for angle bisectors. Review Queue 1. Construct the angle bisector of an 80

More information

Round and Round. - Circle Theorems 1: The Chord Theorem -

Round and Round. - Circle Theorems 1: The Chord Theorem - - Circle Theorems 1: The Chord Theorem - A Historic Note The main ideas about plane geometry were developed by Greek scholars during the period between 600 and 300 B.C.E. Euclid established a school of

More information

9-1: Circle Basics GEOMETRY UNIT 9. And. 9-2: Tangent Properties

9-1: Circle Basics GEOMETRY UNIT 9. And. 9-2: Tangent Properties 9-1: Circle Basics GEOMETRY UNIT 9 And 9-2: Tangent Properties CIRCLES Content Objective: Students will be able to solve for missing lengths in circles. Language Objective: Students will be able to identify

More information

S. Stirling Page 1 of 14

S. Stirling Page 1 of 14 3.1 Duplicating Segments and ngles [and riangles] hese notes replace pages 144 146 in the book. You can read these pages for extra clarifications. Instructions for making geometric figures: You can sketch

More information

Geometry SOL G.4 Constructions Name Date Block. Constructions

Geometry SOL G.4 Constructions Name Date Block. Constructions Geometry SOL G.4 Constructions Mrs. Grieser Name Date Block Constructions Grab your compass and straight edge - it s time to learn about constructions!! On the following pages you will find instructions

More information

6.1 Justifying Constructions

6.1 Justifying Constructions Name lass ate 6.1 Justifying onstructions Essential Question: How can you be sure that the result of a construction is valid? Resource Locker Explore 1 Using a Reflective evice to onstruct a erpendicular

More information

Tangents and Chords Off On a Tangent

Tangents and Chords Off On a Tangent Tangents and Chords SUGGESTED LERNING STRTEGIES: Group Presentation, Think/Pair/Share, Quickwrite, Interactive Word Wall, Vocabulary Organizer, Create Representations, Quickwrite CTIVITY 4.1 circle is

More information

Special Right Triangles and Right Triangle Trigonometry

Special Right Triangles and Right Triangle Trigonometry Special Right Triangles and Right Triangle Trigonometry Reporting Category Topic Triangles Investigating special right triangles and right triangle trigonometry Primary SOL G.8 The student will solve real-world

More information

ONE. angles which I already know

ONE. angles which I already know Name Geometry Period ONE Ticket In Date Ticket In the Door! After watching the assigned video and learning how to construct a perpendicular line through a point, you will perform this construction below

More information

CONSTRUCTION #1: Segment Copy

CONSTRUCTION #1: Segment Copy CONSTRUCTION #1: Segment Copy Objective: Given a line segment, construct a line segment congruent to the given one. Procedure: After doing this Your work should look like this Start with a line segment

More information

Pre-Test. Name Date. 1. Can skew lines be coplanar? Explain.

Pre-Test. Name Date. 1. Can skew lines be coplanar? Explain. Pre-Test Name Date 1. Can skew lines be coplanar? Explain. 2. Point D is at the center of a circle. Points A, B, and C are on the same arc of the circle. What can you say about the lengths of AD, BD, and

More information

ACT Coordinate Geometry Review

ACT Coordinate Geometry Review ACT Coordinate Geometry Review Here is a brief review of the coordinate geometry concepts tested on the ACT. Note: there is no review of how to graph an equation on this worksheet. Questions testing this

More information

Parallel and Perpendicular Lines on the Coordinate Plane

Parallel and Perpendicular Lines on the Coordinate Plane Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane 1.5 Learning Goals Key Term In this lesson, you will: Determine whether lines are parallel. Identify and write the

More information

Lesson 10.1 Skills Practice

Lesson 10.1 Skills Practice Lesson 10.1 Skills Practice Location, Location, Location! Line Relationships Vocabulary Write the term or terms from the box that best complete each statement. intersecting lines perpendicular lines parallel

More information

Geometry Vocabulary Book

Geometry Vocabulary Book Geometry Vocabulary Book Units 2-4 Page 1 Unit 2 General Geometry Point Characteristics: Line Characteristics: Plane Characteristics: RELATED POSTULATES: Through any two points there exists exactly one

More information

Exploring the Pythagorean Theorem

Exploring the Pythagorean Theorem Exploring the Pythagorean Theorem Lesson 11 Mathematics Objectives Students will analyze relationships to develop the Pythagorean Theorem. Students will find missing sides in right triangles using the

More information

Angles formed by Transversals

Angles formed by Transversals Section 3-1: Parallel Lines and Transversals SOL: None Objectives: Identify the relationships between two lines or two planes Name angles formed by a pair of lines and a transversal Vocabulary: Parallel

More information

Materials: Computer lab or set of calculators equipped with Cabri Geometry II and lab worksheet.

Materials: Computer lab or set of calculators equipped with Cabri Geometry II and lab worksheet. Constructing Perpendiculars Lesson Summary: Students will complete the basic compass and straight edge constructions commonly taught in first year high school Geometry. Key Words: perpendicular, compass,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 17, 2017 12:30 to 3:30 p.m., only Student Name: School Name: The possession or use of any communications

More information

Table of Contents. Constructions Day 1... Pages 1-5 HW: Page 6. Constructions Day 2... Pages 7-14 HW: Page 15

Table of Contents. Constructions Day 1... Pages 1-5 HW: Page 6. Constructions Day 2... Pages 7-14 HW: Page 15 CONSTRUCTIONS Table of Contents Constructions Day 1...... Pages 1-5 HW: Page 6 Constructions Day 2.... Pages 7-14 HW: Page 15 Constructions Day 3.... Pages 16-21 HW: Pages 22-24 Constructions Day 4....

More information

Lesson 9.1 Assignment

Lesson 9.1 Assignment Lesson 9.1 Assignment Name Date Earth Measure Introduction to Geometry and Geometric Constructions Use a compass and a straightedge to complete Questions 1 and 2. 1. Construct a flower with 12 petals by

More information

Let s Get This Started!

Let s Get This Started! Lesson 1.1 Assignment 1 Name Date Let s Get This Started! Points, Lines, Planes, Rays, and Line Segments 1. Identify each of the following in the figure shown. a. Name all points. W X p b. Name all lines.

More information

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 3: Constructing Polygons Instruction

UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 3: Constructing Polygons Instruction rerequisite Skills This lesson requires the use of the following skills: using a compass copying and bisecting line segments constructing perpendicular lines constructing circles of a given radius Introduction

More information

2. Here are some triangles. (a) Write down the letter of the triangle that is. right-angled, ... (ii) isosceles. ... (2)

2. Here are some triangles. (a) Write down the letter of the triangle that is. right-angled, ... (ii) isosceles. ... (2) Topic 8 Shapes 2. Here are some triangles. A B C D F E G (a) Write down the letter of the triangle that is (i) right-angled,... (ii) isosceles.... (2) Two of the triangles are congruent. (b) Write down

More information

Geometer s Sketchpad Version 4

Geometer s Sketchpad Version 4 Geometer s Sketchpad Version 4 For PC Name: Date: INVESTIGATION: The Pythagorean Theorem Directions: Use the steps below to lead you through the investigation. After each step, be sure to click in the

More information

Algebra 2. TMT 3 Algebra 2: Student Lesson 2 140

Algebra 2. TMT 3 Algebra 2: Student Lesson 2 140 A.1(B) collect and organize data, make and interpret scatterplots, fit the graph of a function to the data, interpret the results, and proceed to model, predict, and make decisions and critical judgments.

More information

Problem of the Month: Between the Lines

Problem of the Month: Between the Lines Problem of the Month: Between the Lines Overview: In the Problem of the Month Between the Lines, students use polygons to solve problems involving area. The mathematical topics that underlie this POM are

More information

1. Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. 1. Begin with line segment XY.

1. Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. 1. Begin with line segment XY. 1. onstruct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. 1. egin with line segment. 2. lace the compass at point. djust the compass radius so that it is more

More information

Visa Smart Debit/Credit Certificate Authority Public Keys

Visa Smart Debit/Credit Certificate Authority Public Keys CHIP AND NEW TECHNOLOGIES Visa Smart Debit/Credit Certificate Authority Public Keys Overview The EMV standard calls for the use of Public Key technology for offline authentication, for aspects of online

More information

Unit 6: Quadrilaterals

Unit 6: Quadrilaterals Name: Period: Unit 6: Quadrilaterals Geometry Honors Homework Section 6.1: Classifying Quadrilaterals State whether each statement is true or false. Justify your response. 1. All squares are rectangles.

More information

Where should Sam and Marla Wilson look for a new apartment that is equidistant from their jobs?

Where should Sam and Marla Wilson look for a new apartment that is equidistant from their jobs? Where should Sam and Marla Wilson look for a new apartment that is equidistant from their jobs? anywhere on B street 1 12.6 Locus: A Set of Points In the warm up, you described the possible locations based

More information

Circles Assignment Answer the following questions.

Circles Assignment Answer the following questions. Answer the following questions. 1. Define constructions. 2. What are the basic tools that are used to draw geometric constructions? 3. What is the use of constructions? 4. What is Compass? 5. What is Straight

More information

Target 5.4: Use angle properties in triangles to determine unknown angle measurements 5.4: Parallel Lines and Triangles

Target 5.4: Use angle properties in triangles to determine unknown angle measurements 5.4: Parallel Lines and Triangles Unit 5 Parallel and Perpendicular Lines Target 5.1: Classify and identify angles formed by parallel lines and transversals 5.1 a Parallel and Perpendicular lines 5.1b Parallel Lines and its Angle Relationships

More information

9.1 and 9.2 Introduction to Circles

9.1 and 9.2 Introduction to Circles Date: Secondary Math 2 Vocabulary 9.1 and 9.2 Introduction to Circles Define the following terms and identify them on the circle: Circle: The set of all points in a plane that are equidistant from a given

More information

Locus Locus. Remarks

Locus Locus. Remarks 4 4. The locus of a point is the path traced out by the point moving under given geometrical condition (or conditions). lternatively, the locus is the set of all those points which satisfy the given geometrical

More information

Constructing Angle Bisectors and Parallel Lines

Constructing Angle Bisectors and Parallel Lines Name: Date: Period: Constructing Angle Bisectors and Parallel Lines TASK A: 1) Complete the following steps below. a. Draw a circle centered on point P. b. Mark any two points on the circle that are not

More information

G.SRT.B.5: Quadrilateral Proofs

G.SRT.B.5: Quadrilateral Proofs Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org Name: G.SRT.B.5: Quadrilateral Proofs 1 Given that ABCD is a parallelogram, a student wrote the proof below to show that a pair of its

More information

Day 2: Tangram Tune Up Grade 7

Day 2: Tangram Tune Up Grade 7 Day 2: Tangram Tune Up Grade 7 Minds On... Action! Description Review geometric language. Introduce new geometric terminology. Construct tangram pieces and create 2-D composite shapes. Whole Class Reflection

More information

The Geometer s Sketchpad Unit 1. Meet Geometer s Sketchpad

The Geometer s Sketchpad Unit 1. Meet Geometer s Sketchpad Trainer/Instructor Notes: Geometer s Sketchpad Training Meet Geometer s Sketchpad The Geometer s Sketchpad Unit 1 Meet Geometer s Sketchpad Overview: Objective: In this unit, participants become familiar

More information

Big Ideas Math: A Common Core Curriculum Geometry 2015 Correlated to Common Core State Standards for High School Geometry

Big Ideas Math: A Common Core Curriculum Geometry 2015 Correlated to Common Core State Standards for High School Geometry Common Core State s for High School Geometry Conceptual Category: Geometry Domain: The Number System G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment,

More information

Use a proportion to solve the problem. 1) If 5 sandwich rolls cost $0.80, how much will 21 rolls cost? A) $4.36 B) $6.00 C) $3.36 D) $4.

Use a proportion to solve the problem. 1) If 5 sandwich rolls cost $0.80, how much will 21 rolls cost? A) $4.36 B) $6.00 C) $3.36 D) $4. Assignment 6.4-6.6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use a proportion to solve the problem. ) If 5 sandwich rolls cost $0.80, how

More information

Unit 1 Foundations of Geometry: Vocabulary, Reasoning and Tools

Unit 1 Foundations of Geometry: Vocabulary, Reasoning and Tools Number of Days: 34 9/5/17-10/20/17 Unit Goals Stage 1 Unit Description: Using building blocks from Algebra 1, students will use a variety of tools and techniques to construct, understand, and prove geometric

More information

Tangents to Circles. The distance across the circle, through its center, is the diameter of the circle. The diameter is twice the radius.

Tangents to Circles. The distance across the circle, through its center, is the diameter of the circle. The diameter is twice the radius. ircles Tangents to ircles circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. circle with center P is called circle P. The distance from

More information

Geometry by Jurgensen, Brown and Jurgensen Postulates and Theorems from Chapter 1

Geometry by Jurgensen, Brown and Jurgensen Postulates and Theorems from Chapter 1 Postulates and Theorems from Chapter 1 Postulate 1: The Ruler Postulate 1. The points on a line can be paired with the real numbers in such a way that any two points can have coordinates 0 and 1. 2. Once

More information

Geometry - Chapter 6 Review

Geometry - Chapter 6 Review Class: Date: Geometry - Chapter 6 Review 1. Find the sum of the measures of the angles of the figure. 4. Find the value of x. The diagram is not to scale. A. 1260 B. 900 C. 540 D. 720 2. The sum of the

More information

Lesson 3.1 Duplicating Segments and Angles

Lesson 3.1 Duplicating Segments and Angles Lesson 3.1 Duplicating Segments and ngles Name eriod Date In Exercises 1 3, use the segments and angles below. omplete the constructions on a separate piece of paper. S 1. Using only a compass and straightedge,

More information

G.SRT.B.5: Quadrilateral Proofs

G.SRT.B.5: Quadrilateral Proofs Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org Name: G.SRT.B.5: Quadrilateral Proofs 1 Given that ABCD is a parallelogram, a student wrote the proof below to show that a pair of its

More information

3 Kevin s work for deriving the equation of a circle is shown below.

3 Kevin s work for deriving the equation of a circle is shown below. June 2016 1. A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

More information

Mathworks Math Contest (MMC) For Middle School Students October 29, 2013

Mathworks Math Contest (MMC) For Middle School Students October 29, 2013 Mathworks Math Contest (MMC) For Middle School Students October 29, 2013 SCORE (for Mathworks use) STUDENT COVER SHEET Please write in all information neatly and clearly to ensure proper grading. Thank

More information

Date: Period: Quadrilateral Word Problems: Review Sheet

Date: Period: Quadrilateral Word Problems: Review Sheet Name: Quadrilateral Word Problems: Review Sheet Date: Period: Geometry Honors Directions: Please answer the following on a separate sheet of paper. Completing this review sheet will help you to do well

More information

To use properties of perpendicular bisectors and angle bisectors

To use properties of perpendicular bisectors and angle bisectors 5-2 erpendicular and ngle isectors ontent tandards G.O.9 rove theorems about lines and angles... points on a perpendicular bisector of a line segment are exactly those equidistant from the segment s endpoints.

More information

Chapter 5: Relationships Within Triangles

Chapter 5: Relationships Within Triangles Name: Hour: Chapter 5: Relationships Within Triangles GeoGebra Exploration and Extension Project Mr. Kroll 2013-14 GeoGebra Introduction Activity In this tutorial, you will get used to the basics of GeoGebra.

More information

1-2 Measuring and Constructing Segments. Holt Geometry

1-2 Measuring and Constructing Segments. Holt Geometry 1-2 Measuring and Constructing Segments Objectives Use length and midpoint of a segment. Construct midpoints and congruent segments. Vocabulary coordinate midpoint distance bisect length segment bisector

More information

Challenges from Ancient Greece

Challenges from Ancient Greece Challenges from ncient Greece Mathematical goals Make formal geometric constructions with a variety of tools and methods. Use congruent triangles to justify geometric constructions. Common Core State Standards

More information

What s a Widget? EXAMPLE A L E S S O N 1.3

What s a Widget?  EXAMPLE A L E S S O N 1.3 Page 1 of 7 L E S S O N 1.3 What s a Widget? Good definitions are very important in geometry. In this lesson you will write your own geometry definitions. Which creatures in the last group are Widgets?

More information

1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k.

1. Vector Fields. f 1 (x, y, z)i + f 2 (x, y, z)j + f 3 (x, y, z)k. HAPTER 14 Vector alculus 1. Vector Fields Definition. A vector field in the plane is a function F(x, y) from R into V, We write F(x, y) = hf 1 (x, y), f (x, y)i = f 1 (x, y)i + f (x, y)j. A vector field

More information

Measuring and Constructing Angles Going Deeper

Measuring and Constructing Angles Going Deeper Name Class 1-3 Date Measuring and Constructing ngles Going Deeper Essential question: What tools and methods can you use to copy an angle and bisect an angle? n angle is a figure formed by two rays with

More information

CHAPTER 3. Parallel & Perpendicular lines

CHAPTER 3. Parallel & Perpendicular lines CHAPTER 3 Parallel & Perpendicular lines 3.1- Identify Pairs of Lines and Angles Parallel Lines: two lines are parallel if they do not intersect and are coplaner Skew lines: Two lines are skew if they

More information

FSA Geometry EOC Getting ready for. Circles, Geometric Measurement, and Geometric Properties with Equations.

FSA Geometry EOC Getting ready for. Circles, Geometric Measurement, and Geometric Properties with Equations. Getting ready for. FSA Geometry EOC Circles, Geometric Measurement, and Geometric Properties with Equations 2014-2015 Teacher Packet Shared by Miami-Dade Schools Shared by Miami-Dade Schools MAFS.912.G-C.1.1

More information

Problem of the Month: Between the Lines

Problem of the Month: Between the Lines Problem of the Month: Between the Lines The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

More information

Name. Ms. Nong. Due on: Per: Geometry 2 nd semester Math packet # 2 Standards: 8.0 and 16.0

Name. Ms. Nong. Due on: Per: Geometry 2 nd semester Math packet # 2 Standards: 8.0 and 16.0 Name FRIDAY, FEBRUARY 24 Due on: Per: TH Geometry 2 nd semester Math packet # 2 Standards: 8.0 and 16.0 8.0 Students know, derive, and solve problems involving the perimeter, circumference, area, volume

More information

GEOMETRY (Common Core)

GEOMETRY (Common Core) GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Wednesday, August 17, 2016 8:30 to 11:30 a.m., only Student Name: School Name: The

More information

5.1. Perpendiculars and Bisectors. What you should learn

5.1. Perpendiculars and Bisectors. What you should learn age 1 of 8 5.1 erpendiculars and isectors What you should learn GOL 1 Use properties of perpendicular bisectors. GOL 2 Use properties of angle bisectors to identify equal distances, such as the lengths

More information

Lesson 3A. Opening Exercise. Identify which dilation figures were created using r = 1, using r > 1, and using 0 < r < 1.

Lesson 3A. Opening Exercise. Identify which dilation figures were created using r = 1, using r > 1, and using 0 < r < 1. : Properties of Dilations and Equations of lines Opening Exercise Identify which dilation figures were created using r = 1, using r > 1, and using 0 < r < 1. : Properties of Dilations and Equations of

More information

Geometer s Skethchpad 8th Grade Guide to Learning Geometry

Geometer s Skethchpad 8th Grade Guide to Learning Geometry Geometer s Skethchpad 8th Grade Guide to Learning Geometry This Guide Belongs to: Date: Table of Contents Using Sketchpad - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

More information

Euclid s Muse MATERIALS VOCABULARY. area perimeter triangle quadrilateral rectangle line point plane. TIME: 40 minutes

Euclid s Muse MATERIALS VOCABULARY. area perimeter triangle quadrilateral rectangle line point plane. TIME: 40 minutes Euclid s Muse In this activity, participants match geometry terms to definitions and definitions to words. MATERIALS Transparency: Euclid s Muse Directions Transparency/Page: Euclid s Muse Transparency/Page:

More information

The Basics: Geometric Structure

The Basics: Geometric Structure Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 6-2015 The Basics: Geometric Structure Danielle Kendrick Trinity University Follow

More information

1. Write the angles in order from 2. Write the side lengths in order from

1. Write the angles in order from 2. Write the side lengths in order from Lesson 1 Assignment Triangle Inequalities 1. Write the angles in order from 2. Write the side lengths in order from smallest to largest. shortest to longest. 3. Tell whether a triangle can have the sides

More information

GEOMETRY, MODULE 1: SIMILARITY

GEOMETRY, MODULE 1: SIMILARITY GEOMETRY, MODULE 1: SIMILARITY LIST OF ACTIVITIES: The following three activities are in the Sec 01a file: Visual Level: Communication Under the Magnifying Glass Vusi s Photos The activities below are

More information

SESSION THREE AREA MEASUREMENT AND FORMULAS

SESSION THREE AREA MEASUREMENT AND FORMULAS SESSION THREE AREA MEASUREMENT AND FORMULAS Outcomes Understand the concept of area of a figure Be able to find the area of a rectangle and understand the formula base times height Be able to find the

More information

Analytic Geometry EOC Study Booklet Geometry Domain Units 1-3 & 6

Analytic Geometry EOC Study Booklet Geometry Domain Units 1-3 & 6 DOE Assessment Guide Questions (2015) Analytic Geometry EOC Study Booklet Geometry Domain Units 1-3 & 6 Question Example Item #1 Which transformation of ΔMNO results in a congruent triangle? Answer Example

More information

12th Bay Area Mathematical Olympiad

12th Bay Area Mathematical Olympiad 2th Bay Area Mathematical Olympiad February 2, 200 Problems (with Solutions) We write {a,b,c} for the set of three different positive integers a, b, and c. By choosing some or all of the numbers a, b and

More information

Geometry. Teacher s Guide

Geometry. Teacher s Guide Geometry Teacher s Guide WALCH PUBLISHING Table of Contents To the Teacher.......................................................... vi Classroom Management..................................................

More information

Up and Down. - Circle Theorems 2: The Converse of the Chord Theorem -

Up and Down. - Circle Theorems 2: The Converse of the Chord Theorem - - Circle Theorems 2: The Converse of the Chord Theorem - Revision Label the circle diagram showing: the circumference the centre a diameter a chord a radius State the Chord Theorem. Checkpoint An Example

More information

GEOMETRY (Common Core)

GEOMETRY (Common Core) GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Thursday, January 28, 2016-9:15 a.m. to 12:15 p.m., only The possession or use of any

More information

Grade 4 + DIGITAL. EL Strategies. DOK 1-4 RTI Tiers 1-3. Flexible Supplemental K-8 ELA & Math Online & Print

Grade 4 + DIGITAL. EL Strategies. DOK 1-4 RTI Tiers 1-3. Flexible Supplemental K-8 ELA & Math Online & Print Standards PLUS Flexible Supplemental K-8 ELA & Math Online & Print Grade 4 SAMPLER Mathematics EL Strategies DOK 1-4 RTI Tiers 1-3 15-20 Minute Lessons Assessments Consistent with CA Testing Technology

More information

Geometric Constructions

Geometric Constructions Geometry Name: Part 1: What are Geometric Constructions? Geometric Constructions Go to http://www.mathopenref.com/constructions.html. Answer the following questions. 1. What is a construction? 2. What

More information

Angle Measure and Plane Figures

Angle Measure and Plane Figures Grade 4 Module 4 Angle Measure and Plane Figures OVERVIEW This module introduces points, lines, line segments, rays, and angles, as well as the relationships between them. Students construct, recognize,

More information

Warm-Up Up Exercises. 1. Find the value of x. ANSWER 32

Warm-Up Up Exercises. 1. Find the value of x. ANSWER 32 Warm-Up Up Exercises 1. Find the value of x. ANSWER 32 2. Write the converse of the following statement. If it is raining, then Josh needs an umbrella. ANSWER If Josh needs an umbrella, then it is raining.

More information

Lesson 16: The Computation of the Slope of a Non Vertical Line

Lesson 16: The Computation of the Slope of a Non Vertical Line ++ Lesson 16: The Computation of the Slope of a Non Vertical Line Student Outcomes Students use similar triangles to explain why the slope is the same between any two distinct points on a non vertical

More information

L7 Constructions 7.1 Construction Introduction Per Date

L7 Constructions 7.1 Construction Introduction Per Date 7.1 Construction Introduction Per Date In pairs, discuss the meanings of the following vocabulary terms. The first two you should attempt to recall from memory, and for the rest you should try to agree

More information

th Grade Test. A. 128 m B. 16π m C. 128π m

th Grade Test. A. 128 m B. 16π m C. 128π m 1. Which of the following is the greatest? A. 1 888 B. 2 777 C. 3 666 D. 4 555 E. 6 444 2. How many whole numbers between 1 and 100,000 end with the digits 123? A. 50 B. 76 C. 99 D. 100 E. 101 3. If the

More information

Math 7 Notes - Unit 08B (Chapter 5B) Proportions in Geometry

Math 7 Notes - Unit 08B (Chapter 5B) Proportions in Geometry Math 7 Notes - Unit 8B (Chapter B) Proportions in Geometr Sllabus Objective: (6.23) The student will use the coordinate plane to represent slope, midpoint and distance. Nevada State Standards (NSS) limits

More information

University of Houston High School Mathematics Contest Geometry Exam Spring 2016

University of Houston High School Mathematics Contest Geometry Exam Spring 2016 University of Houston High School Mathematics ontest Geometry Exam Spring 016 nswer the following. Note that diagrams may not be drawn to scale. 1. In the figure below, E, =, = 4 and E = 0. Find the length

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 17, 2017 12:30 to 3:30 p.m., only Student Name: School Name: The possession or use of any communications

More information

Stretch lesson: Constructions

Stretch lesson: Constructions 29 Stretch lesson: onstructions Stretch objectives efore you start this chapter, mark how confident you feel about each of the statements below: I can construct the perpendicular bisector of a given line.

More information

Measuring and Drawing Angles and Triangles

Measuring and Drawing Angles and Triangles NME DTE Measuring and Drawing ngles and Triangles Measuring an angle 30 arm origin base line 0 180 0 If the arms are too short to reach the protractor scale, lengthen them. Step 1: lace the origin of the

More information