# Name Date Class Period. 5.2 Exploring Properties of Perpendicular Bisectors

Save this PDF as:

Size: px
Start display at page: ## Transcription

1 Name Date Class Period Activity B 5.2 Exploring Properties of Perpendicular Bisectors MATERIALS QUESTION EXPLORE 1 geometry drawing software If a point is on the perpendicular bisector of a segment, is it equidistant from the endpoints of the segment? Investigate properties of a perpendicular bisector STEP 1 Draw a line segment and perpendicular bisector Draw and label AB horizontally on the screen. Draw the perpendicular bisector of AB. Label the point of intersection of the bisector and AB as C. Locate and label a point D on the perpendicular bisector. STEP 2 Draw line segments Draw DB and DA. Measure DB and DA. Record the lengths on the screen. Drag point D along the perpendicular bisector. Note what is happening to the lengths of DB and DA. DRAW CONCLUSIONS Use your observations to complete these exercises Complete the definition of a perpendicular bisector: If DC is the perpendicular bisector of BA, then DCA and DCB are, and BC and CA are. Suppose D is a point on the perpendicular bisector of AB. What can you conclude about AD and BD? 3. If a point is on the perpendicular bisector of a segment, the distances from the point to the endpoints of the segment?. EXPLORE 2 Construct a perpendicular bisector STEP 1 Draw a line segment and point Start a new construction. Draw AB horizontally on the screen. Draw and label a point E above AB. Steps 1 and 2 1 of 5

2 STEP 2 CONSTRUCT equal LINE SEGMENTS Measure AE and BE. Record the lengths on the screen. Drag point E until BE and AE are equal. STEP 3 Construct equal line segments Step 3 Draw and label a point F below AB. Measure the length of FA and FB. Record their lengths on the screen. Drag point F until FA and FB are equal. STEP 4 Complete the construction Draw segment FE. Label the point of intersection of AB and FE point G. STEP 5 Measure line segments and angles Steps 4 and 5 Complete the table below. Measurement EGA EGB GA GB DRAW CONCLUSIONS Use your observations to answer these exercises 4. Name the perpendicular bisector of AB Explain your reasoning. 5. If EA = EB, then E is on the of AB. 6. If FA = FB, then F is on the of AB. 7. If a point is equidistant from the endpoints of a segment, then the point is on the of the segment. 2 of 5

3 Answer Key B EXPLORE 1 Investigate properties of a perpendicular bisector STEP 2 Draw line segments The lengths of DB and DA remain congruent when point D is dragged. DRAW CONCLUSIONS 3. right angles; congruent They are congruent. The distances are equal EXPLORE 2 Construct a perpendicular bisector STEP 5 Measure line segments and angles Answers will vary. DRAW CONCLUSIONS 4. EF is the perpendicular bisector of AB because it is perpendicular to AB at the midpoint of AB. 5. perpendicular bisector 6. perpendicular bisector 7. perpendicular bisector 3 of 5

4 Teacher Notes ACTIVITY PREPARATION AND MATERIALS Geometry drawing software on a graphing calculator or computer Overhead projector and transparencies (optional) It is not necessary that each student have a calculator or computer. This activity can be done in pairs. ACTIVITY MANAGEMENT You may limit the time the activity takes by only doing one of the two Explores. Students will need to know how to use the geometry drawing software to draw and measure line segments, draw a perpendicular bisector, and select and move points. Common Error In Explore 1, it is important the point D is constructed on the perpendicular bisector. Students should not create a point and move it onto the perpendicular bisector. 4 of 5

5 Activity and Closure Questions Place the diagram below on the board or overhead and ask the following question. In the diagram, XZ is the perpendicular bisector of YT. List all valid statements you can make. Answer: XZ YT, XZY = XZT = 90, YZ = ZT, Z is the midpoint of YT, Y X = XT, Δ XYT is isosceles, Δ YXZ Δ TXZ, YXZ = TXZ, XYZ = XZT, Δ XYZ is a right triangle, Δ XZT is a right triangle Place the diagram below on the board or overhead and ask the following questions. a. If RH = RN then R is on the of H N. Answer: perpendicular bisector b. If HJ = J N then J is on the of H N. Answer: perpendicular bisector 3. Explain how Exercises 3 and 7 are related. Answer: They are converses of each other LESSON TRANSITION In Lesson 5.2, the perpendicular bisector theorem and its converse are introduced. This activity is designed to introduce the theorem and its converse. Students will use the theorem and its converse to solve algebraic equations. In addition, students will investigate the point of concurrency of the perpendicular bisectors of a triangle. 5 of 5

### 9.3 Properties of Chords 9.3. Properties of Chords www.ck12.org 9.3 Properties of Chords Learning Objectives Find the lengths of chords in a circle. Discover properties of chords and arcs. Review Queue 1. Draw a chord in a circle.

### 6.1 Warm Up The diagram includes a pair of congruent triangles. Use the congruent triangles to find the value of x in the diagram. 6.1 Warm Up The diagram includes a pair of congruent triangles. Use the congruent triangles to find the value of x in the diagram. 1. 2. Write a proof. 3. Given: P is the midpoint of MN and TQ. Prove:

### Math 3 Geogebra Discovery - Equidistance Decemeber 5, 2014 Math 3 Geogebra Discovery - Equidistance Decemeber 5, 2014 Today you and your partner are going to explore two theorems: The Equidistance Theorem and the Perpendicular Bisector Characterization Theorem.

### Using inductive reasoning and conjectures Student Activity Sheet 2; use with Exploring The language of geometry 1. REINFORCE Find a geometric representation for the following sequence of numbers. 3, 4, 5, 6, 7, 2. What are the three undefined terms in geometry? 3. Write a description of a point. How are points labeled?

### Objective: Use a compass and straight edge to construct congruent segments and angles. CONSTRUCTIONS Objective: Use a compass and straight edge to construct congruent segments and angles. Introduction to Constructions Constructions: The drawing of various shapes using only a pair of compasses

### Objective: Use a compass and straight edge to construct congruent segments and angles. CONSTRUCTIONS Objective: Use a compass and straight edge to construct congruent segments and angles. Oct 1 8:33 AM Oct 2 7:42 AM 1 Introduction to Constructions Constructions: The drawing of various shapes

### Parallel and Perpendicular Lines on the Coordinate Plane Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane 1.5 Learning Goals Key Term In this lesson, you will: Determine whether lines are parallel. Identify and write the

### 3. Given the similarity transformation shown below; identify the composition: Midterm Multiple Choice Practice 1. Based on the construction below, which statement must be true? 1 1) m ABD m CBD 2 2) m ABD m CBD 3) m ABD m ABC 1 4) m CBD m ABD 2 2. Line segment AB is shown in the

### Geometry Unit 3 Note Sheets Date Name of Lesson. Slopes of Lines. Partitioning a Segment. Equations of Lines. Quiz Date Name of Lesson Slopes of Lines Partitioning a Segment Equations of Lines Quiz Introduction to Parallel and Perpendicular Lines Slopes and Parallel Lines Slopes and Perpendicular Lines Perpendicular

### Properties of Chords Properties of Chords Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

### Do Now: Do Now Slip. Do Now. Lesson 20. Drawing Conclusions. Quiz Tomorrow, Study Blue Sheet. Module 1 Lesson 20 Extra Practice. Lesson 20 Drawing Conclusions HW Quiz Tomorrow, Study Blue Sheet Do Now: Do Now Slip Oct 20 1:03 PM Do Now 1. CB is parallel to DE 2.

### Slopes of Lines Notes What is slope? Slopes of Lines Notes What is slope? Find the slope of each line. 1 Find the slope of each line. Find the slope of the line containing the given points. 6, 2!!"#! 3, 5 4, 2!!"#! 4, 3 Find the slope of

### Constructing Perpendicular and Parallel Lines. Adapted from Walch Education Constructing Perpendicular and Adapted from Walch Education Perpendicular Lines and Bisectors Perpendicular lines are two lines that intersect at a right angle (90 ). A perpendicular line can be constructed

### b. Describe how a horizontal translation changes the coordinates of the endpoints. Pre-Test Name Date. Determine the distance between the points (5, 2) and (2, 6). 2. Mari draws line segment AB on a coordinate plane. The coordinates of A are (, 5). The coordinates of B are (23, 2). She

### (Geometry) Academic Standard: TLW use appropriate tools to perform basic geometric constructions. Seventh Grade Mathematics Assessments page 1 (Geometry) Academic Standard: TLW use appropriate tools to perform basic geometric constructions. A. TLW use tools to draw squares, rectangles, triangles and

### Geometry. 6.1 Perpendicular and Angle Bisectors. Geometry 6.1 Perpendicular and Angle Bisectors mbhaub@mpsaz.org 6.1 Essential Question What conjectures can you make about a point on the perpendicular bisector of a segment and a point on the bisector

### Geometry Topic 4 Quadrilaterals and Coordinate Proof Geometry Topic 4 Quadrilaterals and Coordinate Proof MAFS.912.G-CO.3.11 In the diagram below, parallelogram has diagonals and that intersect at point. Which expression is NOT always true? A. B. C. D. C

### DATE PERIOD. Lesson Reading Guide. Line and Angle Relationships NAME DATE PERIOD Lesson Reading Guide Get Ready for the Lesson Read the introduction at the top of page 306 in your textbook. Write your answers below. 1. Suppose that the measure of angles 4 and 6 are

### 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### 0809ge. Geometry Regents Exam Based on the diagram below, which statement is true? 0809ge 1 Based on the diagram below, which statement is true? 3 In the diagram of ABC below, AB # AC. The measure of!b is 40. 1) a! b 2) a! c 3) b! c 4) d! e What is the measure of!a? 1) 40 2) 50 3) 70

### The 7* Basic Constructions Guided Notes Name: The 7* asic Constructions Guided Notes Included: 1. Given an segment, construct a 2 nd segment congruent to the original. (ctually not included!) 2. Given an angle, construct a 2 nd angle congruent

### Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines Two lines are if they are coplanar and do not intersect. Skew lines. Two

### Find the coordinates of the midpoint of a segment having the given endpoints. G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to

### Chapter 11: Constructions and Loci Chapter 11: Section 11.1a Constructing a Triangle given 3 sides (sss) Leave enough room above the line to complete the shape. Do not rub out your construction lines. They show your method. 1 Section 11.1b

### Exploring Triangles. Exploring Triangles. Overview. Concepts Understanding area of triangles Relationships of lengths of midsegments Exploring Triangles Concepts Understanding area of triangles Relationships of lengths of midsegments of triangles Justifying parallel lines Materials TI-Nspire TI N-spire document Exploring Triangles Overview

### 0810ge. Geometry Regents Exam y # (x \$ 3) 2 % 4 y # 2x \$ 5 1) (0,%4) 2) (%4,0) 3) (%4,%3) and (0,5) 4) (%3,%4) and (5,0) 0810ge 1 In the diagram below, ABC! XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements

### Building Blocks of Geometry Practice A Building Blocks of Geometry Write the following in geometric notation. 1. line EF 2. ray RS 3. line segment JK Choose the letter for the best answer. 4. Identify a line. A BD B AD C CB D BD

### Step 2: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points. Student Name: Teacher: Date: District: Miami-Dade County Public Schools Test: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the given

### Constructions. Unit 9 Lesson 7 Constructions Unit 9 Lesson 7 CONSTRUCTIONS Students will be able to: Understand the meanings of Constructions Key Vocabulary: Constructions Tools of Constructions Basic geometric constructions CONSTRUCTIONS

### Title: Quadrilaterals Aren t Just Squares Title: Quadrilaterals ren t Just Squares Brief Overview: This is a collection of the first three lessons in a series of seven lessons studying characteristics of quadrilaterals, including trapezoids, parallelograms,

### Constructing Perpendiculars to a Line. Finding the Right Line. Draw a line and a point labeled P not on the line, as shown above. Page 1 of 5 3.3 Intelligence plus character that is the goal of true education. MARTIN LUTHER KING, JR. Constructing Perpendiculars to a Line If you are in a room, look over at one of the walls. What is

### 5.3 Angle Bisectors in Triangles 5.3 Angle Bisectors in Triangles Learning Objectives Apply the Angle Bisector Theorem and its converse. Understand concurrency for angle bisectors. Review Queue 1. Construct the angle bisector of an 80

### Special Right Triangles and Right Triangle Trigonometry Special Right Triangles and Right Triangle Trigonometry Reporting Category Topic Triangles Investigating special right triangles and right triangle trigonometry Primary SOL G.8 The student will solve real-world

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Round and Round. - Circle Theorems 1: The Chord Theorem - - Circle Theorems 1: The Chord Theorem - A Historic Note The main ideas about plane geometry were developed by Greek scholars during the period between 600 and 300 B.C.E. Euclid established a school of

### 9-1: Circle Basics GEOMETRY UNIT 9. And. 9-2: Tangent Properties 9-1: Circle Basics GEOMETRY UNIT 9 And 9-2: Tangent Properties CIRCLES Content Objective: Students will be able to solve for missing lengths in circles. Language Objective: Students will be able to identify

### Geometry Chapter 5 study guide Geometry Chapter 5 study guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A right triangle is placed in a convenient position in the first quadrant

### Geometry Vocabulary Book Geometry Vocabulary Book Units 2-4 Page 1 Unit 2 General Geometry Point Characteristics: Line Characteristics: Plane Characteristics: RELATED POSTULATES: Through any two points there exists exactly one

### Assignment. Visiting Washington, D.C. Transversals and Parallel Lines Assignment Assignment for Lesson.1 Name Date Visiting Washington, D.C. Transversals and Parallel Lines Do not use a protractor in this assignment. Rely only on the measurements given in each problem. 1.

### 8.2 Slippery Slopes. A Solidify Understanding Task 7 8.2 Slippery Slopes A Solidify Understanding Task CC BY https://flic.kr/p/kfus4x While working on Is It Right? in the previous module you looked at several examples that lead to the conclusion that the

### Tangents and Chords Off On a Tangent Tangents and Chords SUGGESTED LERNING STRTEGIES: Group Presentation, Think/Pair/Share, Quickwrite, Interactive Word Wall, Vocabulary Organizer, Create Representations, Quickwrite CTIVITY 4.1 circle is

### Topic 1 Chapter 3: Constructions Greek philosopher Plato Euclid(Elements) Topic 1 Chapter 3: Constructions Greek philosopher Plato Euclid(Elements) 1. Duplicating (copying) a segment 2. Duplicating (copying) an angle 3. Constructing the bisector of a segment (bisecting a segment)

### 6-6 Trapezoids and Kites. CCSS SENSE-MAKING If WXYZ is a kite, find each measure. 25. WP CCSS SENSE-MAKING If WXYZ is a kite, find each measure. 25. WP By the Pythagorean Theorem, WP 2 = WX 2 XP 2 = 6 2 4 2 = 20 27. A kite can only have one pair of opposite congruent angles and Let m X = m

### Geometry SOL G.4 Constructions Name Date Block. Constructions Geometry SOL G.4 Constructions Mrs. Grieser Name Date Block Constructions Grab your compass and straight edge - it s time to learn about constructions!! On the following pages you will find instructions

### 6.1 Justifying Constructions Name lass ate 6.1 Justifying onstructions Essential Question: How can you be sure that the result of a construction is valid? Resource Locker Explore 1 Using a Reflective evice to onstruct a erpendicular

### Foundations of Math II Unit 3: Similarity and Congruence Foundations of Math II Unit 3: Similarity and Congruence Academics High School Mathematics 3.1 Warm Up 1. Jill and Bill are doing some exercises. Jayne Funda, their instructor, gently implores Touch your

### CONSTRUCTION #1: Segment Copy CONSTRUCTION #1: Segment Copy Objective: Given a line segment, construct a line segment congruent to the given one. Procedure: After doing this Your work should look like this Start with a line segment

### S. Stirling Page 1 of 14 3.1 Duplicating Segments and ngles [and riangles] hese notes replace pages 144 146 in the book. You can read these pages for extra clarifications. Instructions for making geometric figures: You can sketch

### ONE. angles which I already know Name Geometry Period ONE Ticket In Date Ticket In the Door! After watching the assigned video and learning how to construct a perpendicular line through a point, you will perform this construction below

### Pre-Test. Name Date. 1. Can skew lines be coplanar? Explain. Pre-Test Name Date 1. Can skew lines be coplanar? Explain. 2. Point D is at the center of a circle. Points A, B, and C are on the same arc of the circle. What can you say about the lengths of AD, BD, and

### ACT Coordinate Geometry Review ACT Coordinate Geometry Review Here is a brief review of the coordinate geometry concepts tested on the ACT. Note: there is no review of how to graph an equation on this worksheet. Questions testing this

### Parallel and Perpendicular Lines on the Coordinate Plane Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane 1.5 Learning Goals Key Term In this lesson, you will: Determine whether lines are parallel. Identify and write the

### UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 2: Constructing Lines, Segments, and Angles Instruction Prerequisite Skills This lesson requires the use of the following skills: using a compass understanding the geometry terms line, segment, ray, and angle Introduction Two basic instruments used in geometry 1 IX Mathematics Chapter 8: Quadrilaterals Chapter Notes Top Definitions 1. A quadrilateral is a closed figure obtained by joining four points (with no three points collinear) in an order. 2. A diagonal

### 8.2 Slippery Slopes. A Solidify Understanding Task SECONDARY MATH I // MODULE 8 7 8.2 Slippery Slopes A Solidify Understanding Task CC BY https://flic.kr/p/kfus4x While working on Is It Right? in the previous module you looked at several examples that

### Let s Get This Started! Lesson 1.1 Assignment 1 Name Date Let s Get This Started! Points, Lines, Planes, Rays, and Line Segments 1. Identify each of the following in the figure shown. a. Name all points. W X p b. Name all lines.

### Lesson 10.1 Skills Practice Lesson 10.1 Skills Practice Location, Location, Location! Line Relationships Vocabulary Write the term or terms from the box that best complete each statement. intersecting lines perpendicular lines parallel

### Exploring the Pythagorean Theorem Exploring the Pythagorean Theorem Lesson 11 Mathematics Objectives Students will analyze relationships to develop the Pythagorean Theorem. Students will find missing sides in right triangles using the

### Regents Exam Questions by Topic Page 1 TOOLS OF GEOMETRY: Constructions NAME: Regents Exam Questions by Topic Page 1 1. 060925ge, P.I. G.G.17 Which illustration shows the correct construction of an angle bisector? [A] 3. 060022a, P.I. G.G.17 Using only a ruler and compass, construct

### 6-5 P R OV I N G R H O M B U S E S, R E C TA N G L E S, A N D S Q UA R E S 6-5 P R OV I N G R H O M B U S E S, R E C TA N G L E S, A N D S Q UA R E S Workbook page 261, number 13 Given: ABCD is a rectangle Prove: EDC ECD A D E B C Statements Reasons 1) ABCD is a rectangle 1)

### Unit 6 Guided Notes. Task: To discover the relationship between the length of the mid-segment and the length of the third side of the triangle. Unit 6 Guided Notes Geometry Name: Period: Task: To discover the relationship between the length of the mid-segment and the length of the third side of the triangle. Materials: This paper, compass, ruler

### You MUST know the big 3 formulas! Name 3-13 Review Geometry Period Date Unit 3 Lines and angles Review 3-1 Writing equations of lines. Determining slope and y intercept given an equation Writing the equation of a line given a graph. Graphing

### Sec Geometry - Constructions Sec 2.2 - Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have

### Materials: Computer lab or set of calculators equipped with Cabri Geometry II and lab worksheet. Constructing Perpendiculars Lesson Summary: Students will complete the basic compass and straight edge constructions commonly taught in first year high school Geometry. Key Words: perpendicular, compass,

### 16. DOK 1, I will succeed." In this conditional statement, the underlined portion is Geometry Semester 1 REVIEW 1. DOK 1 The point that divides a line segment into two congruent segments. 2. DOK 1 lines have the same slope. 3. DOK 1 If you have two parallel lines and a transversal, then

### Angles formed by Transversals Section 3-1: Parallel Lines and Transversals SOL: None Objectives: Identify the relationships between two lines or two planes Name angles formed by a pair of lines and a transversal Vocabulary: Parallel

### Visa Smart Debit/Credit Certificate Authority Public Keys CHIP AND NEW TECHNOLOGIES Visa Smart Debit/Credit Certificate Authority Public Keys Overview The EMV standard calls for the use of Public Key technology for offline authentication, for aspects of online

### 2. Use the Mira to determine whether these following symbols were properly reflected using a Mira. If they were, draw the reflection line using the Mira Exercises What is a Mira? o Piece of translucent red acrylic plastic o Sits perpendicular to the surface being examined o Because the Mira is translucent, it allows you to see the reflection of objects

### June 2016 Regents GEOMETRY COMMON CORE 1 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation? 4) 2

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 17, 2017 12:30 to 3:30 p.m., only Student Name: School Name: The possession or use of any communications

### UNIT 3 CIRCLES AND VOLUME Lesson 3: Constructing Tangent Lines Instruction Prerequisite Skills This lesson requires the use of the following skills: understanding the relationship between perpendicular lines using a compass and a straightedge constructing a perpendicular bisector

### Unit 10 Arcs and Angles of Circles Lesson 1: Thales Theorem Opening Exercise Vocabulary Unit 10 Arcs and Angles of Circles Draw a diagram for each of the vocabulary words. Definition Circle The set of all points equidistant from a given

### Table of Contents. Constructions Day 1... Pages 1-5 HW: Page 6. Constructions Day 2... Pages 7-14 HW: Page 15 CONSTRUCTIONS Table of Contents Constructions Day 1...... Pages 1-5 HW: Page 6 Constructions Day 2.... Pages 7-14 HW: Page 15 Constructions Day 3.... Pages 16-21 HW: Pages 22-24 Constructions Day 4....

### Let s Get This Started! Lesson 1.1 Assignment 1 Name Date Let s Get This Started! Points, Lines, Planes, Rays, and Line Segments 1. Identify each of the following in the figure shown. a. Name all points. W X p b. Name all lines.

### To Explore the Properties of Parallelogram Exemplar To Explore the Properties of Parallelogram Objective To explore the properties of parallelogram Dimension Measures, Shape and Space Learning Unit Quadrilaterals Key Stage 3 Materials Required

### Name: Date: Chapter 2 Quiz Geometry. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: Chapter 2 Quiz Geometry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the value of x? Identify the missing justifications.,, and.

### Lesson 9.1 Assignment Lesson 9.1 Assignment Name Date Earth Measure Introduction to Geometry and Geometric Constructions Use a compass and a straightedge to complete Questions 1 and 2. 1. Construct a flower with 12 petals by

### Geometric Constructions Geometric onstructions (1) opying a segment (a) Using your compass, place the pointer at Point and extend it until reaches Point. Your compass now has the measure of. (b) Place your pointer at, and then

### Parallel and Perpen icular Lines. Worksheets n Parallel and Perpen icular Lines Worksheets Exercises 1 5 1. 2. a c b 60 a b 40 c 3. 4. a 51 52 b c d 60 b c a d 65 h i e f g 55 5. a b 163 c 70 d e Discovering Geometry Teaching and Worksheet Masters

### Geometry Midterm Review Spring 2011 Name Date Period. 2. Name three points that are collinear Name a pair of opposite rays. 3. Name Date Period Unit 1 1. Give two other names for AB. 1. 2. Name three points that are collinear. 2. 3. Name a pair of opposite rays. 3. 4. Give another name for CD. 4. Point J is between H and K on

### EXT#2 ws Vertex Form of a Quadratic is Due TODAY HW#13 p222 / 1-14, 20 is due Tuesday Oct 21 Monday Oct 20, 2014 Take out your notebook for today's warm - up! EXT#2 ws Vertex Form of a Quadratic is Due TODAY HW#13 p222 / 1-14, 20 is due Tuesday Oct 21 Did you miss the QUIZ on Angles in a Triangle

### UNIT 1 SIMILARITY, CONGRUENCE, AND PROOFS Lesson 3: Constructing Polygons Instruction rerequisite Skills This lesson requires the use of the following skills: using a compass copying and bisecting line segments constructing perpendicular lines constructing circles of a given radius Introduction

### Topic: Right Triangles & Trigonometric Ratios Calculate the trigonometric ratios for , and triangles. Investigating Special Triangles ID: 7896 Time required 45 minutes Activity Overview In this activity, students will investigate the properties of an isosceles triangle. Then students will construct a 30-60

### 2. Here are some triangles. (a) Write down the letter of the triangle that is. right-angled, ... (ii) isosceles. ... (2) Topic 8 Shapes 2. Here are some triangles. A B C D F E G (a) Write down the letter of the triangle that is (i) right-angled,... (ii) isosceles.... (2) Two of the triangles are congruent. (b) Write down

### Geometry Semester 2 Final Review Class: Date: Geometry Semester 2 Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each unit on the map represents 5 miles. What

### MATH TEST STAR CITY SCHOOL DISTRICT. Geometry / Module 4 MATH TEST STAR CITY SCHOOL DISTRICT Geometry / Module 4 Standard Instructions for the District Administrator/Focus Teacher: Once this test is received, it should be taken to the copier on which it will

### WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

### Geometry Chapter 8 8-5: USE PROPERTIES OF TRAPEZOIDS AND KITES Geometry Chapter 8 8-5: USE PROPERTIES OF TRAPEZOIDS AND KITES Use Properties of Trapezoids and Kites Objective: Students will be able to identify and use properties to solve trapezoids and kites. Agenda

### DIRECTIONS FOR GEOMETRY HONORS CONSTRUCTION PROJECT Name Period DIRECTIONS FOR GEOMETRY HONORS CONSTRUCTION PROJECT Materials needed: Objective: Standards: 8 pieces of unlined white computer / copy paper (8.5 in. by 11in.), compass, ruler, protractor, pencil,

### Algebra 2. TMT 3 Algebra 2: Student Lesson 2 140 A.1(B) collect and organize data, make and interpret scatterplots, fit the graph of a function to the data, interpret the results, and proceed to model, predict, and make decisions and critical judgments. Name: Period: Unit 6: Quadrilaterals Geometry Honors Homework Section 6.1: Classifying Quadrilaterals State whether each statement is true or false. Justify your response. 1. All squares are rectangles.

### 4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate System- Pictures of Equations Concepts: The Cartesian Coordinate System Graphs of Equations in Two Variables x-intercepts and y-intercepts Distance in Two Dimensions and the Pythagorean

### Georgia Department of Education Common Core Georgia Performance Standards Framework Student Edition Analytic Geometry Unit 1 Analytic Geometry Unit 1 Lunch Lines Mathematical goals Prove vertical angles are congruent. Understand when a transversal is drawn through parallel lines, special angles relationships occur. Prove when

### Geometer s Sketchpad Version 4 Geometer s Sketchpad Version 4 For PC Name: Date: INVESTIGATION: The Pythagorean Theorem Directions: Use the steps below to lead you through the investigation. After each step, be sure to click in the

### Unit 7 Scale Drawings and Dilations Unit 7 Scale Drawings and Dilations Day Classwork Day Homework Friday 12/1 Unit 6 Test Monday 12/4 Tuesday 12/5 Properties of Scale Drawings Scale Drawings Using Constructions Dilations and Scale Drawings Problem of the Month: Between the Lines Overview: In the Problem of the Month Between the Lines, students use polygons to solve problems involving area. The mathematical topics that underlie this POM are Unit 6: Parallel and Perpendicular Lines Lesson 6.1: Identify Pairs of Lines and Angles Lesson 3.1 from textbook Objectives Identify relationships between lines such as parallel and skew. Understand and