PreAlgebra Unit 1: Number Sense Unit 1 Review Packet


 Claude Carr
 2 years ago
 Views:
Transcription
1 PreAlgebra Unit 1: Number Sense Unit 1 Review Packet Target 1: Writing Repeating Decimals in Rational Form Remember the goal is to get rid of the repeating decimal so we can write the number in rational form. To get rid of the repeating decimal, set up an equation where x equals the repeating decimals. Example 1: 0.7 Let x = Since 1 digit repeats, multiply both sides by 10 Remember to multiply by ten, move decimal one place to right to make the number 10 times bigger. 10x = Now subtract x from both sides (this gets rid of repeating decimal) 10x = x = x = 7 Now solve one step equation for x: 9x 9 = 7 9 so the rational form is 7 9 Example 2: 0.6 Let x = Since 2 digits repeats, multiply both sides by 100 Remember to multiply by a hundred, move decimal two places to right to make the number 100 times bigger. 100x = Now subtract x from both sides (this gets rid of repeating decimal) 100x = x = x = 6 Now solve one step equation for x: 99x = so the rational form is 6 99 = 4 11
2 Example 2: 0.58 Let x = 0.58 Since 1 digit repeats, multiply both sides by 10 Remember to multiply by ten, move decimal one place to right to make the number 10 times bigger. 10x = 5.8 Now subtract x from both sides (this gets rid of repeating decimal)cancel out repeating parts that are on top of each other and subtract the rest (you ll get rid of decimal later) 10x = 5.81x = x = 5.25 Now solve one step equation for x: 9x 9 = To get rid of decimal, multiply top and bottom by 100 because that will move decimal to end to make numerator a whole number: 5.25(100) = 525 = 7 9(100) Practice Problems: Write each of the following in rational form (as a fraction) Show All Work On a Separate Sheet to Receive Credit Target 2: Perfect Square and Cube Roots Remember the square root of a number is finding the number that multiplied by itself to give you the square root. Example: 49 = 7 because 7 7 = 49 Remember that when working with area of a square, to find the length of each side of the square, you take the square root of the area.
3 Remember the cube root of a number is finding the number multiplied by itself times to give you the cube root. Example: 729 = 9 because = 729 Remember that when working with volume of a square, to find the length of each side of the cube, you take the cube root of the volume. Remember if you are working with fractions you do the numerator and denominator separately and make sure to simplify your fraction if necessary. Example: = 9 = and 144 = 12 so = 12 = 1 4 Practice Problems: Simplify Each of the Following. Show All Work On a Separate Sheet to Receive Credit Find the length of a square that has an area of 100 units Find the length of a cube that has a volume of 27 units. Target : Rational and Irrational Numbers Remember: Whole Numbers: numbers that are positive and do not have fractions or decimals in them. These include positive perfect square and cube roots. Examples: 0, 5, 16, 64
4 Integers: positive and negative numbers that do not have fractions or decimals in them. These include both positive and negative perfect square and cube roots. These include ALL whole numbers. Examples: 8,  6,  8, 0, 12, 144, 216 Rational Numbers: numbers that can be written as fractions. These include ALL whole numbers and ALL integers (including all perfect square and cube roots) as well as ALL fractions (both regular, improper and mixed numbers) and ALL decimals that stop or repeat. Examples: 1,  49,  27, 0, 1,287, 121, 216,, 19, 6, 0.467, Irrational Numbers: numbers that CAN NOT be written as fractions. These include decimals that do not stop and do not repeat, any numbers that have Pi (π) and any NONPERFECT square and cube roots. Examples: 0.24,  8,  12, , 2, 9, 2π, π Practice Problems: Next to each number, write ALL categories of numbers as listed above that the number belongs to π ,
5 Target 4: Rational Approximation To find the rational approximation of an irrational square root, first find the two perfect square roots it falls between. Then set up a fraction to find the decimal part. If you are working with Pi, estimate Pi as.14 and perform the given operation. If a square root has a number in front of it, this means to multiply your rational approximation by that front number. Example: Find the rational approximation of 2 6 Step 1: 6 falls between 4 and 9 so Since 6 is closer to 4 than to 9, it will come before the halfway point. This means the answer to the nearest then has to be one of the following: To find which answer it is, we set up a fraction of our number. The distance from the beginning of the number line to our square root is the distance from 4 to 6 which is 2. This is the numerator. The whole distance across the number line us from 4 to 9 which is 5. This is the denominator so out fraction is 2 5. We then use long division to change the fraction to a decimal. We only need to divide until we get to the hundredths place value so we can use that to round to the nearest tenth = 2.0 so my answer is 2.4. Now I finish by multiply by So 2.4 * 2 = 4.8. Example: 2π (multiply 2 and π) so 2 *.14 = 6.28 which rounds to 6. to nearest tenth. Practice Problems: Find the rational approximation of each of the given numbers to the nearest tenth: π 2
Estimating with Square Roots
ACTIVITY 3.2 Estimating with Square Roots The square root of most numbers is not an integer. You can estimate the square root of a number that is not a perfect square. Begin by determining the two perfect
More informationSquare Roots of Perfect Squares. How to change a decimal to a fraction (review)
Section 1.1 Square Roots of Perfect Squares How to change a decimal to a fraction (review) A) 0.6 The 6 is in the first decimal position called the tenths place. Therefore, B) 0.08 The 8 is in the second
More informationOrder and Compare Rational and Irrational numbers and Locate on the number line
806.2.1 Order and Compare Rational and Irrational numbers and Locate on the number line Rational Number ~ any number that can be made by dividing one integer by another. The word comes from the word "ratio".
More informationRoots and Radicals Chapter Questions
Roots and Radicals Chapter Questions 1. What are the properties of a square? 2. What does taking the square root have to do with the area of a square? 3. Why is it helpful to memorize perfect squares?
More informationUnit 2: Exponents. 8 th Grade Math 8A  Mrs. Trinquero 8B  Dr. Taylor 8C  Mrs. Benefield
Unit 2: Exponents 8 th Grade Math 8A  Mrs. Trinquero 8B  Dr. Taylor 8C  Mrs. Benefield 1 8 th Grade Math Unit 2: Exponents Standards and Elements Targeted in the Unit: NS 1 Know that numbers that are
More informationNumbers & Operations Chapter Problems
Numbers & Operations 8 th Grade Chapter Questions 1. What are the properties of a square? 2. What does taking the square root have to do with the area of a square? 3. Why is it helpful to memorize perfect
More informationNumber Sense Unit 1 Math 10F Mrs. Kornelsen R.D. Parker Collegiate
Unit 1 Math 10F Mrs. Kornelsen R.D. Parker Collegiate Lesson One: Rational Numbers New Definitions: Rational Number Is every number a rational number? What about the following? Why or why not? a) b) c)
More informationMath Fundamentals for Statistics (Math 52) Unit 2:Number Line and Ordering. By Scott Fallstrom and Brent Pickett The How and Whys Guys.
Math Fundamentals for Statistics (Math 52) Unit 2:Number Line and Ordering By Scott Fallstrom and Brent Pickett The How and Whys Guys Unit 2 Page 1 2.1: Place Values We just looked at graphing ordered
More informationChapter 7 Math Guide
I can write fractions as a sum Write as unit fractions This means the fractions are broken into each individual unit/1 single piece. The fraction is /6. The model shows that pieces are shaded in. If you
More informationCategory A: Estimating Square Roots and Cube Roots  3
Category A: Estimating Square Roots and Cube Roots When estimating irrational numbers, the easiest way to compare values is by squaring (or cubing) the given values. Ex: Between which two consecutive numbers
More informationPreTest Unit 7: Real Numbers KEY
PreTest Unit 7: Real Numbers KEY No calculator necessary. Please do not use a calculator. Convert the following fraction to a decimal or decimal to a fraction. (5 pts; 3 pts for correct setup/work, 2
More informationSummer Math Completed 5 th grade Entering 6 th grade
Name Date Summer Math Completed 5 th grade Entering 6 th grade Instructions: Please complete the following problems showing all work. This packet is due on the first day of school and will count as your
More informationPerfect Squares that are Written as Fractions or Decimals
Math 9: Unit 1 Lesson 2 Perfect Squares that are Written as Fractions or Decimals Part 1: Fractions There are two ways to determine the square root of a perfect square that is written as a fraction: 1.
More informationBy Scott Fallstrom and Brent Pickett The How and Whys Guys
Math Fundamentals for Statistics I (Math 52) Unit 2:Number Line and Ordering By Scott Fallstrom and Brent Pickett The How and Whys Guys This work is licensed under a Creative Commons Attribution NonCommercialShareAlike
More informationFocus on Mathematics
Focus on Mathematics Year 4 PreLearning Tasks Number Prelearning tasks are used at the start of each new topic in Maths. The children are grouped after the prelearning task is marked to ensure the work
More informationRadical Expressions and Graph (7.1) EXAMPLE #1: EXAMPLE #2: EXAMPLE #3: Find roots of numbers (Objective #1) Figure #1:
Radical Expressions and Graph (7.1) Find roots of numbers EXAMPLE #1: Figure #1: Find principal (positive) roots EXAMPLE #2: Find n th roots of n th powers (Objective #3) EXAMPLE #3: Figure #2: 7.1 Radical
More informationWhat I can do for this unit:
Unit 1: Real Numbers Student Tracking Sheet Math 10 Common Name: Block: What I can do for this unit: After Practice After Review How I Did 11 I can sort a set of numbers into irrationals and rationals,
More informationOutcome 9 Review Foundations and PreCalculus 10
Outcome 9 Review Foundations and PreCalculus 10 Level 2 Example: Writing an equation in slope intercept form SlopeIntercept Form: y = mx + b m = slope b = yintercept Ex : Write the equation of a line
More informationWe could also take square roots of certain decimals nicely. For example, 0.36=0.6 or 0.09=0.3. However, we will limit ourselves to integers for now.
7.3 Evaluation of Roots Previously we used the square root to help us approximate irrational numbers. Now we will expand beyond just square roots and talk about cube roots as well. For both we will be
More informationCHAPTER 1 MATHEMATICAL CONCEPTS
CHAPTER 1 MATHEMATICAL CONCEPTS Part I Expressing Numbers that are Very Large or Very Small 1. Scientific Notation In the study of chemistry we often encounter numbers that are very large or very small.
More informationMental Calculation Policy 2014
Mental Calculation Policy 2014 RECEPTION Children count reliably with numbers from one to 20 and place them in order. Children can say which number is one more or one less than a given number up to 20
More informationNumber Sense and Decimal Unit Notes
Number Sense and Decimal Unit Notes Table of Contents: Topic Page Place Value 2 Rounding Numbers 2 Face Value, Place Value, Total Value 3 Standard and Expanded Form 3 Factors 4 Prime and Composite Numbers
More informationAn ordered collection of counters in rows or columns, showing multiplication facts.
Addend A number which is added to another number. Addition When a set of numbers are added together. E.g. 5 + 3 or 6 + 2 + 4 The answer is called the sum or the total and is shown by the equals sign (=)
More informationCorrelation of USA Daily Math Grade 5 to Common Core State Standards for Mathematics
Correlation of USA Daily Math Grade 5 to Common Core State Standards for Mathematics 5.OA Operations and Algebraic Thinking (Mondays) 5.OA.1 Use parentheses, brackets, or p. 1 #3 p. 7 #3 p. 12 Brain Stretch
More information"No math concept is beyond the grasp of a child, if it is presented at the child's level." ~Jerry Mortensen. Mortensen Math
Fractions Mortensen Math http://crewtonramoneshouseofmath.blogspot.com/2014/07/basetenblocksforfractionssuccess.html When working with fractions, start with small denominatorskeep the denominators
More informationNOTES: SIGNED INTEGERS DAY 1
NOTES: SIGNED INTEGERS DAY 1 MULTIPLYING and DIVIDING: Same Signs (POSITIVE) + + = + positive x positive = positive = + negative x negative = positive Different Signs (NEGATIVE) + = positive x negative
More informationThe Real Number System and Pythagorean Theorem Unit 9 Part B
The Real Number System and Pythagorean Theorem Unit 9 Part B Standards: 8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion;
More informationHillhead High School. Fractions. What you need to know. S.O Grady 1
Fractions What you need to know S.O Grady What is a fraction? A fraction is a part of a whole (). Fractions consist of two numbers, a numerator and a denominator. Top number How many parts we have Bottom
More informationWheels Diameter / Conversion of Units
Note to the teacher On this page, students will learn about the relationships between wheel diameter, circumference, revolutions and distance. They will also convert measurement units and use fractions
More informationMath 154 :: Elementary Algebra
Math :: Elementary Algebra Section 9. Section 9. Section 9. Section 9. Section 9. Section 9.6 Math :: Elementary Algebra Section 9. Introduction to Square Roots. This answer should be in your own words..
More informationAdding Fractions with Different Denominators. Subtracting Fractions with Different Denominators
Adding Fractions with Different Denominators How to Add Fractions with different denominators: Find the Least Common Denominator (LCD) of the fractions Rename the fractions to have the LCD Add the numerators
More informationThe bottom number in the fraction is called the denominator. The top number is called the numerator.
For Topics 8 and 9, the students should know: Fractions are a part of a whole. The bottom number in the fraction is called the denominator. The top number is called the numerator. Equivalent fractions
More informationExtra Practice 1. Name Date. Lesson 1: Numbers in the Media. 1. Rewrite each number in standard form. a) 3.6 million b) 6 billion c)
Master 4.27 Extra Practice 1 Lesson 1: Numbers in the Media 1. Rewrite each number in standard form. 3 a) 3.6 million b) 6 billion c) 1 million 4 2 1 d) 2 billion e) 4.25 million f) 1.4 billion 10 2. Use
More informationExtra Practice 1. Name Date. Lesson 1: Numbers in the Media. 1. Rewrite each number in standard form. a) 3.6 million
Master 4.27 Extra Practice 1 Lesson 1: Numbers in the Media 1. Rewrite each number in standard form. a) 3.6 million 3 b) 6 billion 4 c) 1 million 2 1 d) 2 billion 10 e) 4.25 million f) 1.4 billion 2. Use
More informationCourse Syllabus  Online Prealgebra
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 1.1 Whole Numbers, Place Value Practice Problems for section 1.1 HW 1A 1.2 Adding Whole Numbers Practice Problems for section 1.2 HW 1B 1.3 Subtracting Whole Numbers
More information5.1 Congruent Triangles 99 Mastery Practice Squares Square Roots Cubes Cube Roots 15 Mastery Practice 21
Chapter  Squares, Square Roots, Cubes and Cube Roots. Squares. Square Roots 7. Cubes. Cube Roots 5 Mastery Practice Chapter  Rational and Irrational Numbers. Rational Numbers. Real Numbers 7. Operations
More information1. What percentage of the hundredths grids below are shaded in?
Math Review Fractions, Ratio and Percent (Units 6 & 7) 1. What percentage of the hundredths grids below are shaded in? 45% 75% 5% 2. Write one parttowhole and one parttopart ratio for the following
More informationCALCULATING SQUARE ROOTS BY HAND By James D. Nickel
By James D. Nickel Before the invention of electronic calculators, students followed two algorithms to approximate the square root of any given number. First, we are going to investigate the ancient Babylonian
More informationSquares and Square Roots Algebra 11.1
Squares and Square Roots Algebra 11.1 To square a number, multiply the number by itself. Practice: Solve. 1. 1. 0.6. (9) 4. 10 11 Squares and Square Roots are Inverse Operations. If =y then is a square
More informationMrs. Ambre s Math Notebook
Mrs. Ambre s Math Notebook Almost everything you need to know for 7 th grade math Plus a little about 6 th grade math And a little about 8 th grade math 1 Table of Contents by Outcome Outcome Topic Page
More informationName Chapter 1 and 2 Review. Indicate the answer choice that best completes the statement or answers the question.
Name Chapter 1 and 2 Review 1. The volume of the cube is 512 in 3. Find the side length of the cube. Indicate the answer choice that best completes the statement or answers the question. Estimate to the
More informationWelcome to Norwalk High School!
Welcome to Norwalk High School! You are about to embark on the next journey in your educational career. We are looking forward to a yearlong adventure with you in Algebra. There are a team of teachers
More informationCHAPTER 3 DECIMALS. EXERCISE 8 Page Convert 0.65 to a proper fraction may be written as: 100. i.e = =
CHAPTER 3 DECIMALS EXERCISE 8 Page 21 1. Convert 0.65 to a proper fraction. 0.65 may be written as: 0.65 100 100 i.e. 0.65 65 100 Dividing both numerator and denominator by 5 gives: 65 13 100 20 Hence,
More information1 /4. (OneHalf) (OneQuarter) (ThreeEighths)
LESSON 4: Fractions: A fraction is a part of a whole. Slice a pizza, and you will have fractions: 1 /2 1 /4 3 /8 (OneHalf) (OneQuarter) (ThreeEighths) The top number tells how many slices you have and
More informationReal Numbers and the Number Line. Unit 1 Lesson 3
Real Numbers and the Number Line Unit 1 Lesson 3 Students will be able to: graph and compare real numbers using the number line. Key Vocabulary: Real Number Rational Number Irrational number NonIntegers
More informationSection 1.5 An Introduction to Logarithms
Section. An Introduction to Logarithms So far we ve used the idea exponent Base Result from two points of view. When the base and exponent were given, for instance, we simplified to the result 8. When
More informationLesson 1 6. Algebra: Variables and Expression. Students will be able to evaluate algebraic expressions.
Lesson 1 6 Algebra: Variables and Expression Students will be able to evaluate algebraic expressions. P1 Represent and analyze patterns, rules and functions with words, tables, graphs and simple variable
More informationFind the value of the expressions. 3 x = 3 x = = ( ) 9 = 60 (12 + 8) 9 = = 3 9 = 27
PreAlgebra Concepts Important Concepts exponent In a power, the number of times a base number is used as a factor order of operations The rules which tell which operation to perform first when more than
More informationMath 205 Test 2 Key. 1. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded
Math 20 Test 2 Key Instructions. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded. 2. Please begin each section of questions on a new sheet of paper. 3. Please
More informationPowers and roots 6.1. Previous learning. Objectives based on NC levels and (mainly level ) Lessons 1 Squares, cubes and roots.
N 6.1 Powers and roots Previous learning Before they start, pupils should be able to: use index notation and the index laws for positive integer powers understand and use the order of operations, including
More informationStation 1. Rewrite each number using Scientific Notation 1. 6,890,000 = ,560,000 = 3. 1,500,000,000 = 4. 8,200 = 6. 0.
Station 1 Rewrite each number using Scientific Notation 1. 6,890,000 = 2. 240,560,000 = 3. 1,500,000,000 = 4. 8,200 = 5. 50 = 6. 0.00000000265 = 7. 0.0009804 = 8. 0.000080004 = 9. 0.5 = Station 2 Add using
More informationa) 1/2 b) 3/7 c) 5/8 d) 4/10 e) 5/15 f) 2/4 a) twofifths b) threeeighths c) onetenth d) twothirds a) 6/7 b) 7/10 c) 5/50 d) ½ e) 8/15 f) 3/4
MATH M010 Unit 2, Answers Section 2.1 Page 72 Practice 1 a) 1/2 b) 3/7 c) 5/8 d) 4/10 e) 5/15 f) 2/4 Page 73 Practice 2 a) twofifths b) threeeighths c) onetenth d) twothirds e) fourninths f) one quarter
More informationLesson 0.1 The Same yet Smaller
Lesson 0.1 The Same yet Smaller 1. Write an expression and find the total shaded area in each square. In each case, assume that the area of the largest square is 1. a. b. c. d. 2. Write an expression and
More information2.8 Estimating Square Roots
2.8 Estimating Square Roots YOU WILL NEED a calculator GOAL Use perfect square benchmarks to estimate square roots of other fractions and decimals. INVESTIGATE the Math Bay is preparing for the Egg Drop
More informationCK12 Algebra II with Trigonometry Concepts 1
1.1 Subsets of Real Numbers 1. Rational Number. Irrational Number. Rational Number 4. Whole Number 5. Integer 6. Irrational Number 7. Real, Rational, Integer, Whole, and Natural Number 8. Real and Rational
More informationCan the number be represented as a fraction? What are the different categories of numbers? CPM Materials modified by Mr. Deyo
Common Core Standard: 8.NS.1, 8.NS.2, 8.EE.2 Can the number be represented as a fraction? What are the different categories of numbers? CPM Materials modified by Mr. Deyo Title: IM8 Ch. 9.2.4 What Kind
More information56 Study Guide. Radical Expressions and Rational Exponents. Attendance Problems. Simplify each expression. (No decimal answers!
Page 1 of 12 Radical Expressions and Rational Exponents Attendance Problems. Simplify each expression. (No decimal answers) 11 8 7 7 2 2.. 2. 11 6. I can rewrite radical expressions by using rational exponents.
More informationAssignment 5 unit34radicals. Due: Friday January 13 BEFORE HOMEROOM
Assignment 5 unit34radicals Name: Due: Friday January 13 BEFORE HOMEROOM Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Write the prime factorization
More informationClass 8 Cubes and Cube Root
ID : in8cubesandcuberoot [1] Class 8 Cubes and Cube Root For more such worksheets visit www.edugain.com Answer the questions (1) Find the value of A if (2) If you subtract a number x from 15 times
More informationSummer Solutions Problem Solving Level 4. Level 4. Problem Solving. Help Pages
Level Problem Solving 6 General Terms acute angle an angle measuring less than 90 addend a number being added angle formed by two rays that share a common endpoint area the size of a surface; always expressed
More informationfind more or less than a given number find 10 or 100 more or less than a given number
count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number Number: Number and Place Value COUNTING Consolidate count to and across 100, forwards and backwards, beginning
More informationWrite each expression using exponents a b c x x x y y x. x y. x 3 y. x y. x y
1. Which of the following is equivalent to? 13.40 3.25 0.325 0.325 Write the decimal as a fraction or mixed number in simplest form. 2. 1.35 Replace each with , or = to make a true statement. 3.
More information2. Questions on Classwork and Homework form yesterday. 4. Completing the square to solve quadratic
1. Warm up word problem  2. Questions on Classwork and Homework form yesterday 3. Number Sense. 4. Completing the square to solve quadratic equations 1 2 3 Apr 12 12:35 PM 4 Apr 13 2:12 PM 5 6 7 factors
More informationGrade 9 ~ Unit 1 Part 1: Square Roots
Grade 9 ~ Unit 1 Part 1: Square Roots Name : Sec 1.1: Square Roots of Perfect Squares. Review from Grade 8 If we can represent an area using squares then it is a perfect square. For example, the numbers
More informationI can explain the effect of multiplying and dividing numbers by 10, 100 and 1000.
I can explain the effect of multiplying and dividing numbers by 10, 100 and 1000. Explain how you multiply 36x10=, 72x100=, 57x1000= Explain how you divide 55 by 10, 67 by 100 and 33 by 1000. 36x10=360
More informationGAP CLOSING. Powers and Roots. Intermediate / Senior Facilitator Guide
GAP CLOSING Powers and Roots Intermediate / Senior Facilitator Guide Powers and Roots Diagnostic...5 Administer the diagnostic...5 Using diagnostic results to personalize interventions...5 Solutions...5
More informationDeveloping Conceptual Understanding of Number. Set D: Number Theory
Developing Conceptual Understanding of Number Set D: Number Theory Carole Bilyk cbilyk@gov.mb.ca Wayne Watt wwatt@mts.net Vocabulary digit hundred s place whole numbers even Notes Number Theory 1 odd multiple
More information5.7 Introduction to Square Roots
5.7. INTRODUCTION TO SQUARE ROOTS 425 5.7 Introduction to Square Roots Recall that x 2 = x x. The Square of a Number. Thenumber x 2 is calledthe square ofthe number x. Thus, for example: 9 2 = 9 9 = 81.
More informationUsing column addition, keep the decimal points aligned one beneath the other to keep the correct place value of the digits.
Q15. Using column addition, keep the decimal points aligned one beneath the other to keep the correct place value of the digits. Q1. 1. 6 3 8. 2 + 3. 2 5 4 3. 0 5 [1.6 + 38.2 + 3.25 = 43.05] Q2. 0. 1
More informationFractions & Decimals Student Clinical Interview
Fractions & Decimals Student Clinical Interview Fractions Learning Pathway Curricular Connection QUESTION/PROMPT/VISUAL Anticipated Response Notes Unit Fractions Unit A Use proportional reasoning to make
More informationIntermediate Mathematics League of Eastern Massachusetts
Meet #5 March 2009 Intermediate Mathematics League of Eastern Massachusetts Meet #5 March 2009 Category 1 Mystery 1. Sam told Mike to pick any number, then double it, then add 5 to the new value, then
More informationTo divide a number by a power of 10, you can use the exponent to determine how the position of the decimal point changes in the quotient.
Lesson 5.1 Algebra Division Patterns with Decimals To divide a number by 1, 1, or 1,, use the number of zeros in the divisor to determine how the position of the decimal point changes in the quotient.
More informationPythagorean Theorem Unit
Pythagorean Theorem Unit TEKS covered: ~ Square roots and modeling square roots, 8.1(C); 7.1(C) ~ Real number system, 8.1(A), 8.1(C); 7.1(A) ~ Pythagorean Theorem and Pythagorean Theorem Applications,
More informationSection 2.1 Extra Practice
Section. Extra Practice. BLM 5.. Identify the rational numbers. a) 7 5 0.606 8 b) 0. 9. 0 0 7.. Write the opposite of each rational number. a) 9 b) c) 7.6 d) 6. e) 0 f) 7 5 7. Match each letter on the
More informationMath + 4 (Red) SEMESTER 1. { Pg. 1 } Unit 1: Whole Number Sense. Unit 2: Whole Number Operations. Unit 3: Applications of Operations
Math + 4 (Red) This researchbased course focuses on computational fluency, conceptual understanding, and problemsolving. The engaging course features new graphics, learning tools, and games; adaptive
More informationEstimating Square Roots To The Nearest Tenth
To The Nearest Tenth Free PDF ebook Download: To The Nearest Tenth Download or Read Online ebook estimating square roots to the nearest tenth in PDF Format From The Best User Guide Database hash marks
More informationLesson Paper Version Online Version. HM 12.4 ( 3 rd Gr.) Practice and enrichment, McGraw/Hill Write about Math (Tricky Times), HM 12.
Lesson Paper Version Online Version 1 Calendar HM 12.5 (3 rd Gr.) practice or enrichment sheets 2 Counting Patterns Cybersluth (more difficult patterns) and Super Teacher number patternsadvanced 4plus
More informationAn Overview of Mathematics 4
An Overview of Mathematics 4 Number (N) read, write, represent, and describe whole numbers to 10 000 using concrete materials, pictures, expressions (e.g., 400 + 7), words, placevalue charts, and symbols
More information+ 4 ~ You divided 24 by 6 which equals x = 41. 5th Grade Math Notes. **Hint: Zero can NEVER be a denominator.**
Basic Fraction numerator  (the # of pieces shaded or unshaded) denominator  (the total number of pieces) 5th Grade Math Notes Mixed Numbers and Improper Fractions When converting a mixed number into
More informationNUMBER, NUMBER SYSTEMS, AND NUMBER RELATIONSHIPS. Kindergarten:
Kindergarten: NUMBER, NUMBER SYSTEMS, AND NUMBER RELATIONSHIPS Count by 1 s and 10 s to 100. Count on from a given number (other than 1) within the known sequence to 100. Count up to 20 objects with 11
More informationa. $ b. $ c. $
LESSON 51 Rounding Decimal Name To round decimal numbers: Numbers (page 268) 1. Underline the place value you are rounding to. 2. Circle the digit to its right. 3. If the circled number is 5 or more, add
More informationIntermediate A. Help Pages & Who Knows
& Who Knows 83 Vocabulary Arithmetic Operations Difference the result or answer to a subtraction problem. Example: The difference of 5 and is 4. Product the result or answer to a multiplication problem.
More informationGeorgia Department of Education Common Core Georgia Performance Standards Framework Fifth Grade Mathematics Unit 2
PRACTICE TASK: Adapted from Investigations in Number, Data, and Space: How Many Tens? How Many Ones? Addition, Subtraction, and the Number System. STANDARDS FOR MATHEMATICAL CONTENT MCC5.NBT.7 Add, subtract,
More informationMeet # 1 October, Intermediate Mathematics League of Eastern Massachusetts
Meet # 1 October, 2000 Intermediate Mathematics League of Eastern Massachusetts Meet # 1 October, 2000 Category 1 Mystery 1. In the picture shown below, the top half of the clock is obstructed from view
More informationFraction Race. Skills: Fractions to sixths (proper fractions) [Can be adapted for improper fractions]
Skills: Fractions to sixths (proper fractions) [Can be adapted for improper fractions] Materials: Dice (2 different colored dice, if possible) *It is important to provide students with fractional manipulatives
More informationQuestion Bank for grade 6. Numbers
Question Bank for grade 6 Q1. a) List the factors of 24 b) List the prime factors of 18 c) Write 24 as a product of its prime factors. d) List three multiples of 24 Q2.Complete the table below: Check the
More informationMATHEMATICS QUARTERLY TEST MARCH 2015 GRADE 9
GENERAL EDUCATION AND TRAINING MATHEMATICS QUARTERLY TEST MARCH 01 GRADE 9 MARKS: 100 DURATION: HOURS Number of pages including cover page: 6 Mathematics Grade 9 March Test 01 INSTRUCTIONS AND INFORMATION
More informationObjectives: Students will learn to divide decimals with both paper and pencil as well as with the use of a calculator.
Unit 3.5: Fractions, Decimals and Percent Lesson: Dividing Decimals Objectives: Students will learn to divide decimals with both paper and pencil as well as with the use of a calculator. Procedure: Dividing
More informationMAT 0002 Final Review A. Acosta
1. The page design for a magazine cover includes a blank strip at the top called a header, and a blank strip at the bottom called a footer. In the illustration below, how much page length is lost because
More informationMAT 0002 Final Review A. Acosta. 1. Round to the nearest thousand. Select the correct answer: a b. 94,100 c. 95,000 d.
1. Round 94156 to the nearest thousand. 94000 94,100 95,000 d. 94,200 2. Round $67230 to the nearest $100. $68000 $67000 $67200 d. $67300 3. Subtract: 851 (476 61) 314 1,266 436 d. 446 PAGE 1 4. From the
More informationIntermediate Mathematics League of Eastern Massachusetts
Meet #5 March 2006 Intermediate Mathematics League of Eastern Massachusetts Meet #5 March 2006 Category 1 Mystery You may use a calculator today. 1. The combined cost of a movie ticket and popcorn is $8.00.
More informationConnected Mathematics 2, 6th Grade Units (c) 2006 Correlated to: Utah Core Curriculum for Math (Grade 6)
Core Standards of the Course Standard I Students will acquire number sense and perform operations with rational numbers. Objective 1 Represent whole numbers and decimals in a variety of ways. A. Change
More informationAlgebra/Geometry Session Problems Questions 120 multiple choice
lgebra/geometry Session Problems Questions 10 multiple choice nswer only one choice: (a), (b), (c), (d), or (e) for each of the following questions. Only use a number pencil. Make heavy black marks that
More informationMock 2 Maths 2015 Answers
Q1. a) To work out how many children like Gospel add all the numbers that fall within the Gospel circle: [Gospel = 18 + 9 + 7 + 6 = 40] b) To work out how many children like Country add all the numbers
More informationSt. Michael s Episcopal School. Summer Math. for rising 6 th grade students
Page 1 St. Michael s Episcopal School Summer Math for rising 6 th grade students 2017 Students entering Sixth Grade should have mastered all basic facts, understand and identify place values to hundred
More informationModule 5 Trigonometric Identities I
MAC 1114 Module 5 Trigonometric Identities I Learning Objectives Upon completing this module, you should be able to: 1. Recognize the fundamental identities: reciprocal identities, quotient identities,
More informationI can use the four operations (+, , x, ) to help me understand math.
I Can Common Core! 4 th Grade Math I can use the four operations (+, , x, ) to help me understand math. Page 1 I can understand that multiplication fact problems can be seen as comparisons of groups (e.g.,
More informationSquares and Square roots
Squares and Square roots Introduction of Squares and Square Roots: LECTURE  1 If a number is multiplied by itsely, then the product is said to be the square of that number. i.e., If m and n are two natural
More informationClass 8: Square Roots & Cube Roots (Lecture Notes)
Class 8: Square Roots & Cube Roots (Lecture Notes) SQUARE OF A NUMBER: The Square of a number is that number raised to the power. Examples: Square of 9 = 9 = 9 x 9 = 8 Square of 0. = (0.) = (0.) x (0.)
More informationTERM 2 MATHS NOTES COMMON FRACTIONS
1 TERM 2 MATHS NOTES COMMON FRACTIONS Table of Contents DEFINITIONS AND KEY WORDS:... 3 Proper Fractions:... 3 Improper Fractions:... 3 Mixed Fractions:... 3 CONVERTING FRACTIONS... 4 EXERCISE 1... 4 EQUIVALENT
More information