Cartan Involutions and Cartan Decompositions of a Semi-Simple Lie Algebra

Size: px
Start display at page:

Download "Cartan Involutions and Cartan Decompositions of a Semi-Simple Lie Algebra"

Transcription

1 Utah State University Tutorials on... in hour or less Differential Geometry Software Project Cartan Involutions and Cartan Decompositions of a Semi-Simple Lie Algebra Ian M. Anderson Utah State University Follow this and additional works at: Part of the Algebra Commons and the Geometry and Topology Commons Recommended Citation Anderson Ian M. "Cartan Involutions and Cartan Decompositions of a Semi-Simple Lie Algebra" (205). Tutorials on... in hour or less. Paper 5. This Article is brought to you for free and open access by the Differential Geometry Software Project at DigitalCommons@USU. It has been accepted for inclusion in Tutorials on... in hour or less by an authorized administrator of DigitalCommons@USU. For more information please contact rebecca.nelson@usu.edu.

2 Tutorial Series digitalcommons.usu. edu/dg Cartan Involutions and Cartan Decompositions of a Semi-Simple Lie Algebra Synopsis Let g be a semi-simple Lie algebra with Killing form $ $. The related concepts of Cartan involution and Cartan decomposition play an important role in the structure theory for real semi-simple Lie algebras. In this worksheet we shall review the basic definitions and properties of Cartan involutions and Cartan decompositions and illustrate these using the DifferentialGeometry software package for Lie algebras. We discuss in some detail the method given in [] page 203 for the construction of a Cartan involution for any semisimple Lie algebra. Definitions and Properties Definition. A Cartan involution of g is a Lie algebra automorphism Q : g / g with Q 2 bilinear form B Q x y = K x Q y is positive-definite. = Id and such that the symmetric Definition 2. A Cartan decomposition is a vector space decomposition g = t p where t is a subalgebra p a subspace [t p] p [p p] t and the Killing form is negative-definite on t and positive-definite on p. We remark that these properties imply that the decomposition g = t p defines a symmetric pair. The subalgebra t is called the compact part of the Cartan decomposition and the subspace p is called the positive part. Theorem. Given a Cartan decomposition the linear transformation which is the identity Id on t and KId on p is a Cartan

3 involution. Conversely given a Cartan involution Q the + - eigenspaces E = p and E K = t define a Cartan decomposition. Theorem 2. Any two Cartan involutions Q and Q 2 on g are related by an inner automorphism f : g / g that is Q 2 = f Q f K. Theorem 3. If a matrix representation of the algebra is available and the set of matrices defining this representation are closed under transposition (or under conjugate-transposition) then the decomposition into skew-hermitian and hermitian matrices will give a Cartan decomposition.. Cartan Involutions for Matrix Algebras In this section we illustrate Theorem 3 in the Synopsis using the standard representations of sl 3 and su 2 2. > with(differentialgeometry): with(liealgebras): Example : sl 3 The simplest examples of Cartan decompositions are provided by the algebras sl n. The compact part of the Cartan decomposition is given by the the skew-symmetric matrices and the positive part is given by the trace-free symmetric matrices. Retrieve the structure equations for sl 3. We use the keyword arguments labelformat and labels to generate labels for vectors which match their matrix definitions as elementary matrices. > > LD := SimpleLieAlgebraData("sl(3)" sl3 labelformat = "gl" labels = ['E' 'theta']): DGsetup(LD); Lie algebra: sl3 (2..) MultiplicationTable("LieTable");

4 sl3 E E22 E2 E3 E2 E23 E3 E E 0 0 E2 2 E3 K E2 E23 K 2 E3 K E E K E2 E3 E2 2 E23 K E3 K 2 E E2 K E2 E2 0 0 E K E22 E3 K E 0 E3 K 2 E3 K E3 0 0 K E23 0 E E2 E2 E2 K E2 K E C E22 E23 K E3 (2..2) E23 K E23 K 2 E23 K E3 E2 E22 E3 2 E3 E3 E K E 0 K E2 0 0 E E 2 E 0 K E2 E3 K E The matrices which correspond to the vectors E E22 E2 E3... are given by the standard representation. M := StandardRepresentation(sl3); M := (2..3) 0 0 K 0 0 K In this simple example we can calculate the Cartan decomposition by hand. The compact part is given by the skewsymmetric matrices in the span of M. T := evaldg([e2 - E2 E3 - E3 E23 - E]); T := E2 K E2 E3 K E3 E23 K E (2..4) The positive part is given by the symmetric matrices. P := evaldg([e E22 E2 + E2 E3 + E3 E23 + E]); P := E E22 E2 C E2 E3 C E3 E23 C E (2..5) Let's check that this is correct. We see that the Killing form is negative-definite on T and positive-definite on P.

5 Killing(T); Killing(P); K K K (2..6) (2..7) We see that T T 3 T ; TT := BracketOfSubspaces(TT); TT := K E23 C E E3 K E3 K E2 C E2 GetComponents(TT T orfalse = "on"); (2..8) (2..9) that T P 3 P; TP := BracketOfSubspaces(T P); TP := K E2 K E2 2 E K 2 E22 K E23 K E E3 C E3 2 E GetComponents(TP P orfalse = "on"); (2..0) (2..) and that P P 3 T: PP := BracketOfSubspaces(P P); PP := E2 K E2 2 E3 K 2 E3 E23 K E (2..2)

6 GetComponents(PP T orfalse = "on"); (2..3) We conclude the decomposition defined by T P defines a symmetric pair. The corresponding Cartan involution is easily constructed. Theta := LinearTransformation([[T[] T[]] [T[2] T[2]] [T[3] T[3]] [P[] - P[]] [P[2] - P[2]] [P[3] - P[3]] [P[4] -P[4]] [P[5]- P[5]]]); Q := E / K E E22 / K E22 E2 / K E2 E3 / K E3 E2 / K E2 E23 / K E E3 / K E3 E / K E23 Query(Theta "Homomorphism"); ComposeTransformations(Theta Theta); E / E E22 / E22 E2 / E2 E3 / E3 E2 / E2 E23 / E23 E3 / E3 E / E (2..4) (2..5) (2..6) These steps for finding the Cartan decomposition and Cartan involution can be reproduced with the commands CartanDecomposition and CartanInvolution > T P := CartanDecomposition(M sl3); T P := E2 K E2 E3 K E3 E23 K E E E22 E2 C E2 E3 C E3 E23 C E > CartanInvolution(T P); E / K E E22 / K E22 E2 / K E2 E3 / K E3 E2 / K E2 E23 / K E E3 / K E3 E / K E23 (2..7) (2..8) Example 2: su(22) For our second example we consider the 0-dimensional real Lie algebra su 2 2. Two different (but isomorphic) versions of this algebra are available with the command SimpleLieAlgebraData. In version su 2 2 is defined as the Lie algebra of complex matrices which are skew-symmetric with respect to the matrix

7 Version 2 is the set of matrices which are skew-symmetric with respect to the matrix K 0. K Initialize the second version of su 2 2. LD2 := SimpleLieAlgebraData("su(22)" su22 version = 2): DGsetup(LD2); Lie algebra: su22 (2.2.) Here is the defining or standard representation. su22 > M := StandardRepresentation(su22); 0 K I I 0 M := 0 I KI (2.2.2) I I I 0 0 KI 0 0 I 0 0 K 0 I 0 KI I KI 0 KI 0 0 KI I 0 0 0

8 I 0 KI Note that this representation is closed under complex conjugation but not under Hermitian conjugation. su22 > su22 > Query(M "ClosedUnderConjugation"); Query(M "ClosedUnderHermitianTransposition"); false (2.2.3) (2.2.4) Here is the Cartan decomposition computed from the standard representation. su22 > T P := CartanDecomposition(M su22); T P := e e2 e e2 e3 e4 e5 e3 e4 e5 e6 e7 e8 e9 e0 (2.2.5) Let's check that the matrices corresponding to T are skew-hermitian su22 > Tmatrices := [M[] M[2] M[] M[2] M[3] M[4] M[5]]; 0 K I 0 I 0 Tmatrices := 0 I 0 0 K 0 I 0 KI I KI 0 (2.2.6) I su22 > I 0 KI seq(t + t^* t = Tmatrices);

9 (2.2.7) Check that the matrices corresponding to P are hermitian. su22 > Pmatrices := DGzip(convert(P DGlist) M "plus"); I 0 I 0 Pmatrices := KI I 0 0 KI 0 0 (2.2.8) KI 0 0 I 0 0 KI 0 0 su22 > seq(t - t^* t = Pmatrices); (2.2.9) Conjugacy of Cartan Involutions We use the symplectic Lie algebra sp 4 R to illustrate the fact that if Q : g / g is a Cartan involution and f : g / g is an

10 automorphism then f Q f K is also a Cartan involution. This section is independent of other sections. > with(differentialgeometry): with(liealgebras): Retrieve the structure equations for sp 4 R and initialize. > LD2 := SimpleLieAlgebraData("sp(4R)" sp4r); LD2 := e e2 = e2 e e3 = K e3 e e4 = 0 e e5 = 2 e5 e e6 = e6 e e7 = 0 e e8 = K 2 e8 e e9 = K e9 e e0 = 0 e2 e3 = e K e4 e2 e4 = e2 e2 e5 = 0 e2 e6 = 2 e5 e2 e7 = e6 e2 e8 = K e9 e2 e9 = K 2 e0 e2 e0 = 0 e3 e4 = K e3 e3 e5 = e6 e3 e6 = 2 e7 e3 e7 = 0 e3 e8 = 0 e3 e9 = K 2 e8 e3 e0 = K e9 e4 e5 = 0 e4 e6 = e6 e4 e7 = 2 e7 e4 e8 = 0 e4 e9 = K e9 e4 e0 = K 2 e0 e5 e6 = 0 e5 e7 = 0 e5 e8 = e e5 e9 = e2 e5 e0 = 0 e6 e7 = 0 e6 e8 = e3 e6 e9 = e C e4 e6 e0 = e2 e7 e8 = 0 e7 e9 = e3 e7 e0 = e4 e8 e9 = 0 e8 e0 = 0 e9 e0 = 0 DGsetup(LD2); Lie algebra: sp4r (3.) (3.2) One has immediate access to many properties of a simple Lie algebra that is created by the SimpleLieAlgebraData command. The command SimpleLieAlgebraProperties returns a record whose exports give the Lie algebra properties. sp4r > P := SimpleLieAlgebraProperties(sp4R); P := Record CartanSubalgebra = e e4 CartanMatrix KillingForm SimpleRoots = K 0 2 PositiveRoots = K (3.3) SimpleRootSpaces = table K = e2 0 2 = e7 PositiveRootSpaces = table K = e2 0 2 = e7 2 0 = e5 = e6 NegativeRoots = K 0 K2 K K K2 0 NegativeRootSpaces = table 0 K2 = e0 K2 0 = e8 K K = e9 K = e3 RootSpaceDecomposition = table K = e2 0 K2 = e0 0 2 = e7 K2 0 = e8 K K = e9 2 0 = e5 K = e3 = e6 BorelSubalgebra = e e4 e2 e7 e6 e5

11 CartanDecomposition = e2 K e3 e7 K e0 e6 K e9 e5 K e8 e4 e2 C e3 e e7 C e0 e6 C e9 e5 C e8 CartanInvolution = e / K e e2 / K e3 e3 / K e2 e4 / K e4 e5 / K e8 e6 / K e9 e7 / K e0 e8 / K e5 e9 / K e6 e0 / K e7 Here is a Cartan involution. sp4r > Theta := P:-CartanInvolution; Q := e / K e e2 / K e3 e3 / K e2 e4 / K e4 e5 / K e8 e6 / K e9 e7 / K e0 e8 / K e5 e9 / K e6 e0 / K e7 (3.4) Here is the corresponding Cartan decomposition. sp4r > T P := P:-CartanDecomposition; T P := e2 K e3 e7 K e0 e6 K e9 e5 K e8 e4 e2 C e3 e e7 C e0 e6 C e9 e5 C e8 (3.5) For example we check that e2 Ke3 2 T is in the + eigenspace of Q and e6 C e9 2 P is in the - eigenspace of Q sp4r > sp4r > ApplyLinearTransformation(Theta e2 - e3); e2 K e3 ApplyLinearTransformation(Theta e6 + e9); K e6 K e9 (3.6) (3.7) We create an automorphism of sp 4 R using the matrix exponential of an adjoint matrix. sp4r > phi := LinearTransformation(sp4R sp4r AdjointExp(e3 + e5)); f := e / e C e3 K 2 e5 K 3 2 e6 K e7 e2 / K e C e2 K e3 C e4 C e5 C 2 3 e6 C 3 e7 e3 / e3 K e6 K e7 e4 / (3.8) K e3 C e4 C 2 e6 C 3 e7 e5 / e5 C e6 C e7 e6 / e6 C 2 e7 e7 / e7 e8 / e C 2 e3 K e5 K 2 e6 K 4 e7 C e8 e9 / K 3 2 e C e2 K 2 3 e3 C 2 e4 C e5 C 5 2 e6 C 6 e7 K 2 e8 C e9 e0 / 2 e K 2 e2 C 6 e3

12 K 6 e4 K 4 e5 K 2 e6 K 36 e7 C e8 K e9 C e0 Conjugate the Cartan involution Q by f. sp4r > Theta2 := ComposeTransformations(InverseTransformation(phi) Theta phi); Q2 := e / K 27 4 e K 3 e2 C e3 C 6 2 e4 K 27 4 e5 C 3 8 e6 K 9 9 e7 C 6 e8 C 5 2 e9 C e0 e2 / 25 6 e C 6 e2 K 5 e3 K 43 8 e4 C 9 4 C 5 3 e4 K 9 4 e5 C 7 6 K 0 72 e6 K 9 36 e5 K 6 36 e6 C e7 K 8 3 e8 K e9 K 3 e0 e3 / K 3 e K 5 2 e2 C 6 e3 e7 C 3 e8 C 2 e9 C e0 e4 / 23 2 e C 5 3 e2 K 43 8 e3 K e4 C 9 2 e5 e6 C 4 54 e7 K 4 3 e8 K 5 6 e9 K 3 e0 e5 / 3 e C 3 2 e2 K 4 3 e3 K 2 3 e4 C 9 4 e5 K e6 C 4 9 e7 K 4 e8 (3.9) K 2 e9 K e0 e6 / 5 2 e C 2 e2 K e3 K 5 6 e4 C 3 2 e5 K 7 2 e6 C 2 9 e7 K 4 e8 K 3 e9 K 2 e0 e7 / 2 e C 2 e2 K 6 e3 K 6 e4 C 4 e5 K 2 e6 C 36 K 8 6 K C e5 C 57 6 e7 K e8 K e9 K e0 e8 / K 27 8 e K 9 8 e2 C 9 8 e6 K e7 C 9 4 e8 C 3 4 e9 C 4 e0 e9 / 3 8 e C 7 6 e6 C e7 K 2 e8 K 7 2 e9 K 6 e6 K 68 4 e7 C 4 9 e8 C 9 e9 C 36 e0 e0 e0 / K 9 8 e K 9 72 e2 K 6 36 e2 C 4 27 e3 C 9 24 e4 e3 K 0 72 e4 C 57 8 e5 e3 C 4 08 e4 K e5 Check that Q2 is a Cartan involution. sp4r > Query(Theta2 "CartanInvolution"); (3.0) We can calculate the corresponding Cartan decomposition using either the DGEigentensor command in the Tensor

13 package or the command CartanDecomposition. sp4r > EigenSpaces := C sp4r > EigenSpaces := Tensor:-DGEigenTensors(Theta2 [e e2 e3 e4 e5 e6 e7 e8 e9 e0]); K K K K K K e3 C e C e3 C 3 2 e4 C e5 2 8 e C 3 2 e4 C e9 K 7 e C 5 6 e2 K 6 K 3 4 e K 3 2 e2 C 9 2 e3 C 27 4 e4 C e e2 K 85 2 e3 K e4 C e0 K 2 6 e K 45 8 e2 e3 K 63 e4 C e8 K 9 8 e K 9 4 e2 C 5 4 e3 C 57 8 e C 43 2 e2 K 37 6 K 7 4 e2 C 37 6 e3 C 5 4 e4 K 4 e5 C 6 e6 C e9 K 6 C e8 T P := e C e C 3 4 e2 K 3 2 e3 K 3 4 e4 C 3 4 e5 K 5 4 e6 C e7 T P := CartanDecomposition(Theta2); 2 e5 C 6 e6 K 2 4 e7 K e8 C 3 4 e9 C 9 4 e0 e2 C 8 e3 K 5 8 e5 C 45 8 e6 K 3 e7 C 3 2 e9 C 9 2 e0 e4 C 63 6 e3 K 4 2 e4 C 6 e C 5 6 e2 K 8 e5 K 89 6 e4 C e7 e5 K e6 C e0 K 4 e e3 K 5 6 e4 K 7 6 e5 K 6 e6 e5 K e6 C 85 6 e7 K 2 e8 K 9 2 e9 K 5 2 e0 e6 C e7 K 3 e8 K 27 4 e9 K 57 4 e0 e (3.) (3.2)

14 C 9 6 C e7 K e8 C e9 C e0 e4 K 9 6 K e0 e6 K 0 3 e7 C e9 C e0 e2 K 4 9 e7 K e8 K e8 K e9 K e0 e7 K e8 K e9 K e0 e5 K 4 3 e9 K e0 e3 C 9 2 e7 C e8 C e9 e7 C e8 The individual eigenvectors produced by these 2 commands are not the same but the eigenspaces spanned by these eigenvectors can be shown to be the same using DGequal. 3. A General Algorithm for Constructing a Cartan Involution This section provides a detailed illustration of the method given in [] page 203 for the construction of a Cartan involution for any semi-simple Lie algebra. The steps are as follows: Step. Construct the complexification of the g C of the Lie algebra g. This is a real Lie algebra whose elements are x C i y where x y 2 g. Let s : g C / g C denote the standard conjugation map s (x C i y = x Ki y. A Lie algebra homomorphism y : g C / g C which commutes with s will preserve the eigenspaces of s and therefore restricts to a homomorphism of the underlying original Lie algebra g. Step 2. Construct a compact form u of g and identify u with a subalgebra of g C. Step 3. Construct the conjugation map t : g C / g C defined with respect to u. A key observation is that t is a Cartan involution of g C. The problem is that t does not commute with s and therefore the Cartan involution t of g C which we have just constructed does not restrict to a mapping of g. Step 4. Construct the map y = s t s t and check that the eigenvalues of y are all positive. Step 5. Then Q = y / 4 t y K / 4 is a Cartan involution of g C which commutes with s. This automorphism restricts to a

15 Cartan involution of g. We illustrate these steps using the Lie algebra su 2. Of course this is a matrix algebra and a Cartan involution can be found using Theorem 3 as was illustrated in Section. But the objective here is to calculate a Cartan involution for su 2 as an abstract Lie algebra. This section is independent of the other sections of this worksheet. Step. The Lie algebra su(2) and its complexification su 2 C > with(differentialgeometry): with(liealgebras): The Lie algebra su 2 is the real 8-dimensional Lie algebra of trace-free 3 # 3 complex matrices which preserve a Minkowski inner product. We initialize the Lie algebra su 2 with the commands SimpleLieAlgebraData and DGsetup > LD := SimpleLieAlgebraData("su(2)" su2); LD := e e2 = 0 e e3 = 3 e7 e e4 = 3 e8 e e5 = 0 e e6 = 0 e e7 = K 3 e3 e e8 = K 3 e4 e2 e3 = K e3 e2 e4 = e4 e2 e5 = K 2 e5 e2 e6 = 2 e6 e2 e7 = K e7 e2 e8 = e8 e3 e4 = e2 e3 e5 = 0 e3 e6 = K e8 e3 e7 = 2 e5 e3 e8 = e e4 e5 = K e7 e4 e6 = 0 e4 e7 = e e4 e8 = 2 e6 e5 e6 = e2 e5 e7 = 0 e5 e8 = K e3 e6 e7 = K e4 e6 e8 = 0 e7 e8 = e2 > DGsetup(LD); Lie algebra: su2 (4..) (4..2) The complexification of su 2 is a 6-dimensional real Lie algebra whose underlying vector space is the direct sum su 2 4 i su 2. The command complexify creates a Lie algebra using a basis adapted to this direct sum. su2 > LD2 := Complexify(su2 su2c); LD2 := e e2 = 0 e e3 = 3 e7 e e4 = 3 e8 e e5 = 0 e e6 = 0 e e7 = K 3 e3 e e8 = K 3 e4 e e9 = 0 e e0 = 0 e e = 3 e5 e e2 = 3 e6 e e3 = 0 e e4 = 0 e e5 = K 3 e e e6 = K 3 e2 e2 e3 = K e3 e2 e4 = e4 e2 e5 = K 2 e5 e2 e6 = 2 e6 e2 e7 = K e7 e2 e8 = e8 e2 e9 = 0 e2 e0 = 0 e2 e = K e e2 e2 = e2 e2 e3 = K 2 e3 e2 e4 = 2 e4 e2 e5 = K e5 e2 e6 (4..3)

16 = e6 e3 e4 = e2 e3 e5 = 0 e3 e6 = K e8 e3 e7 = 2 e5 e3 e8 = e e3 e9 = K 3 e5 e3 e0 = e e3 e = 0 e3 e2 = e0 e3 e3 = 0 e3 e4 = K e6 e3 e5 = 2 e3 e3 e6 = e9 e4 e5 = K e7 e4 e6 = 0 e4 e7 = e e4 e8 = 2 e6 e4 e9 = K 3 e6 e4 e0 = K e2 e4 e = K e0 e4 e2 = 0 e4 e3 = K e5 e4 e4 = 0 e4 e5 = e9 e4 e6 = 2 e4 e5 e6 = e2 e5 e7 = 0 e5 e8 = K e3 e5 e9 = 0 e5 e0 = 2 e3 e5 e = 0 e5 e2 = e5 e5 e3 = 0 e5 e4 = e0 e5 e5 = 0 e5 e6 = K e e6 e7 = K e4 e6 e8 = 0 e6 e9 = 0 e6 e0 = K 2 e4 e6 e = e6 e6 e2 = 0 e6 e3 = K e0 e6 e4 = 0 e6 e5 = K e2 e6 e6 = 0 e7 e8 = e2 e7 e9 = 3 e e7 e0 = e5 e7 e = K 2 e3 e7 e2 = K e9 e7 e3 = 0 e7 e4 = e2 e7 e5 = 0 e7 e6 = e0 e8 e9 = 3 e2 e8 e0 = K e6 e8 e = K e9 e8 e2 = K 2 e4 e8 e3 = e e8 e4 = 0 e8 e5 = K e0 e8 e6 = 0 e9 e0 = 0 e9 e = K 3 e7 e9 e2 = K 3 e8 e9 e3 = 0 e9 e4 = 0 e9 e5 = 3 e3 e9 e6 = 3 e4 e0 e = e3 e0 e2 = K e4 e0 e3 = 2 e5 e0 e4 = K 2 e6 e0 e5 = e7 e0 e6 = K e8 e e2 = K e2 e e3 = 0 e e4 = e8 e e5 = K 2 e5 e e6 = K e e2 e3 = e7 e2 e4 = 0 e2 e5 = K e e2 e6 = K 2 e6 e3 e4 = K e2 e3 e5 = 0 e3 e6 = e3 e4 e5 = e4 e4 e6 = 0 e5 e6 = K e2 To help remind us of the construction of the complexification we will use the following labels for the basis vectors: su2 > su(2) > su2cvectorlabels := [E E2 E3 E4 E5 E6 E7 E8 ie ie2 ie3 ie4 ie5 ie6 ie7 ie8]; su2cvectorlabels := E E2 E3 E4 E5 E6 E7 E8 ie ie2 ie3 ie4 ie5 ie6 ie7 ie8 DGsetup(LD2 su2cvectorlabels [xi]); Lie algebra: su2c (4..4) (4..5) We shall need the tautological mapping i : su 2 5 C /su 2 C which maps a vector in su 2 with complex coefficients to its counterpart in su 2 C. su2 > su2 > su2 > su2 > su2 > iota := proc(x) local A B; A:= convert(dgre(x) DGlist); B := convert(dgim(x) DGlist); DGzip([op(A) op(b)] su2cvectorlabels "plus"); end:

17 Let's check that this procedure works iota(e) iota(i*e) iota( 2*e + 3*I*e2); E ie 2 E C 3 ie2 (4..6) We need the map which defines complex conjugation on su 2 C - it is the identity on the real part of su 2 C and minus the identity on the imaginary part of su 2 C. This map is not a Cartan involution. sigma := LinearTransformation(su2C su2c LinearAlgebra:-DiagonalMatrix( [$8 -$8])); s := E / E E2 / E2 E3 / E3 E4 / E4 E5 / E5 E6 / E6 E7 / E7 E8 / E8 ie / K ie ie2 / su2 > K ie2 ie3 / K ie3 ie4 / K ie4 ie5 / K ie5 ie6 / K ie6 ie7 / K ie7 ie8 / K ie8 Query(sigma "Homomorphism"); Query(sigma "CartanInvolution"); false (4..7) (4..8) (4..9) Step 2. A compact form u of su(2) and the Cartan involution t of su 2 C To calculate a compact form u of su 2 we need a Cartan subalgebra the associated root space decomposition and a choice of positive roots. RSD := RootSpaceDecomposition(CSA); RSD := table K3 I K = e3 C I e7 0 2 = e6 3 I = e4 K I e8 0 K2 = e5 3 I K = e3 K I e7 K3 I = e4 C I e8 su2 > CSA := CartanSubalgebra(su2); CSA := PosRts := PositiveRoots(RSD); PosRts := e e I 3 I K (4.2.) (4.2.2) (4.2.3)

18 Here are complex bases defining the real split form and the real compact form of su 2. SplitBasis CompactBasis := SplitAndCompactForms(CSA RSD PosRts); SplitBasis CompactBasis := e2 K I 2 e K 2 e2 K e6 K 4 e3 C I 4 e7 K I 4 e4 K 4 e8 K e5 K e4 K I e8 I e3 (4.2.4) K e7 I e2 2 e K I 2 e2 K e5 K e6 K 4 e3 K e4 C I 4 e7 K I e8 I e3 K I 4 e4 K e7 K 4 e8 I e5 K I e6 K I 4 e3 C I e4 K 4 e7 K e8 e3 C 4 e4 C I e7 K I 4 e8 su2 > LieAlgebraData(CompactBasis Compactsu2); e e2 = 0 e e3 = 2 e6 e e4 = K e7 e e5 = e8 e e6 = K 2 e3 e e7 = e4 e e8 = K e5 e2 e3 = K e6 e2 e4 = 2 e7 e2 e5 = e8 e2 e6 = e3 e2 e7 = K 2 e4 e2 e8 = K e5 e3 e4 = K e5 e3 e5 = e4 e3 e6 = 2 e e3 e7 = K e8 e3 e8 = e7 e4 e5 = K e3 e4 e6 = e8 e4 e7 = 2 e2 e4 e8 = K e6 e5 e6 = e7 e5 e7 = K e6 e5 e8 = 2 e C 2 e2 e6 e7 = e5 e6 e8 = e4 e7 e8 = K e3 (4.2.5) Step 3. The Cartan involution t of su 2 C associated to compact form u We take the complex vectors defining the compact form of su 2 and map them into su 2 C. This gives us the compact part of a Cartan decomposition for su 2 C. T := ie2 T := map(iota CompactBasis); 2 E K 2 ie2 K E5 K E6 K 4 E3 K E4 C 4 ie7 K ie8 K E7 K 4 E8 C ie3 K 4 K 4 E7 K E8 K 4 ie3 C ie4 E3 C 4 E4 C ie7 K 4 ie8 ie4 ie5 K ie6 (4.3.) We take the complex vectors defining the compact of su 2 multiply by I and map into su 2 C. This gives us the

19 non-compact (or positive) part of a Cartan decomposition for su 2 C. su2 > P := map(iota [seq(evaldg(i*c) c = CompactBasis)]); P := K E2 2 E2 C 2 ie K ie5 K ie6 K 4 E7 C E8 K 4 ie3 K ie4 K E3 C 4 E4 K ie7 K 4 4 E3 K E4 K 4 ie7 K ie8 K E7 C 4 E8 C ie3 C 4 ie4 Now we create the transformation which is - on T and on P. ie8 K E5 C E6 (4.3.2) tau := LinearTransformation([seq([x x] x = T) seq([x -x] x = P)]); t := E / E E2 / K E2 E3 / 7 8 E4 C 5 8 ie8 E4 / 7 8 E3 C 5 8 ie7 E5 / E6 E6 / E5 E7 / 7 8 E8 (4.3.3) K 5 8 ie4 E8 / 7 8 E7 K 5 8 ie3 ie / K ie ie2 / ie2 ie3 / 5 8 E8 K 7 8 ie4 ie4 / 5 8 E7 K 7 8 ie3 ie5 / K ie6 ie6 / K ie5 ie7 / K 5 8 E4 K 7 8 ie8 ie8 / K 5 8 E3 K 7 8 ie7 Let's check that t a Cartan involution. Query(tau "CartanInvolution"); (4.3.4) Step 4. The automorphisms y and y / 4 Define the composition y = s + t + s + t. psi := ComposeTransformations(sigma tau sigma tau); y := E / E E2 / E2 E3 / E3 K ie7 E4 / E4 K ie8 E5 / E5 E6 / E6 E7 (4.4.)

20 / 257 / 255 E7 C 255 E8 C 257 ie3 E8 / 257 E8 C 255 ie4 ie5 / ie5 ie6 / ie6 ie7 / K 255 ie4 ie / ie ie2 / ie2 ie3 / 255 E3 C 257 E7 C 257 ie7 ie8 / K 255 ie3 ie4 E4 C 257 ie8 It is shown in reference [] that y has positive eigenvalues. We take the 4-th root of the Jacobian of y and use it to construct f = y / 4. A := Tools:-DGinfo(psi "JacobianMatrix"): phi := LinearTransformation(su2C su2c LinearAlgebra:-MatrixPower(A /4) ); f := E / E E2 / E2 E3 / 5 4 E3 K 3 4 ie7 E4 / 5 4 E4 K 3 4 ie8 E5 / E5 E6 / E6 E7 / 5 4 E7 (4.4.2) C 3 4 ie3 E8 / 5 4 E8 C 3 4 ie4 ie / ie ie2 / ie2 ie3 / 3 4 E7 C 5 4 ie3 ie4 / 3 4 E8 C 5 4 ie4 ie5 / ie5 ie6 / ie6 ie7 / K 3 4 E3 C 5 4 ie7 ie8 / K 3 4 E4 C 5 4 ie8 Check the result : DGequal(psi ComposeTransformations(phi phi phi phi)); (4.4.3) Step 5. A Cartan involution for su(2) We use the transformation y constructed in the previous step to define q = y+t +y K for su 2 C which commutes with s.. This is a Cartan involution theta := ComposeTransformations(phi tau InverseTransformation(phi)); q := E / E E2 / K E2 E3 / E4 E4 / E3 E5 / E6 E6 / E5 E7 / E8 E8 / E7 ie / K ie ie2 / ie2 ie3 / K ie4 ie4 / K ie3 ie5 / K ie6 ie6 / K ie5 ie7 / K ie8 ie8 / K ie7 (4.5.)

21 Check that theta is a Cartan involution for su 2 C. Query(theta "CartanInvolution"); (4.5.2) Check that q commutes with s. DGequal(ComposeTransformations(theta sigma) ComposeTransformations(sigma theta)); (4.5.3) We calculate the restriction of q to su 2. A := convert(theta DGMatrix)[..8..8]; 0 A := 0 K (4.5.4) The restriction to su 2 is the desired Cartan involution. su2 > Theta := LinearTransformation(su2 su2 A); Q := e / e e2 / K e2 e3 / e4 e4 / e3 e5 / e6 e6 / e5 e7 / e8 e8 / e7 (4.5.5) Check this result.

22 su2 > Query(Theta "CartanInvolution"); (4.5.6) The steps --5 are implemented with the command CartanInvolution. Theta := CartanInvolution(CSA RSD PosRts); Q := e / e e2 / K e2 e3 / e4 e4 / e3 e5 / e6 e6 / e5 e7 / e8 e8 / e7 (4.5.7) Highlighted Commands CartanDecomposition CartanInvolution CartanSubalgebra Complexify ComposeTranformations DGRe DGIm DGequal InverseTransformation Killing PositiveRoots SimpleLieAlgebraData SplitAndCompactForms RootSpaceDecomposition LinearTransformation References. A. Cap and Jan Slovak Parabolic Geometrics I - Background and General Theory Mathematical Surveys and Monographs 54 American Mathematical Society (2009). Release Notes This worksheet was compiled with Maple 7 and DG release USU available by request from ian.anderson@usu.edu Author Ian M. Anderson Department of Mathematics and Statistics Utah State University December 8 204

Jordan Algebras and the Exceptional Lie algebra f 4

Jordan Algebras and the Exceptional Lie algebra f 4 Tutorial Series Table of Contents Related Pages digitalcommons.usu. edu/dg Jordan Algebras and the Exceptional Lie algebra f Synopsis. The Compact Form of f References Release Notes Cartan Subalgebras.

More information

Non-Isomorphic Real Simple Lie Algebras of the Same Complex Type and Character

Non-Isomorphic Real Simple Lie Algebras of the Same Complex Type and Character Tutorial Series igitalcommons.u.eu/g Non-Imorphic Real Simple Lie Algebras of the Same Complex Type an Character Synopsis Complex simple Lie algebras are classifie by their root types -- these are labele

More information

Citation for published version (APA): Nutma, T. A. (2010). Kac-Moody Symmetries and Gauged Supergravity Groningen: s.n.

Citation for published version (APA): Nutma, T. A. (2010). Kac-Moody Symmetries and Gauged Supergravity Groningen: s.n. University of Groningen Kac-Moody Symmetries and Gauged Supergravity Nutma, Teake IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

On the isomorphism problem of Coxeter groups and related topics

On the isomorphism problem of Coxeter groups and related topics On the isomorphism problem of Coxeter groups and related topics Koji Nuida 1 Graduate School of Mathematical Sciences, University of Tokyo E-mail: nuida@ms.u-tokyo.ac.jp At the conference the author gives

More information

Classification of Spacetimes with Symmetry

Classification of Spacetimes with Symmetry Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2016 Classification of Spacetimes with Symmetry Jesse W. Hicks Utah State University Follow this and additional

More information

Graduate Texts in Mathematics. Editorial Board. F. W. Gehring P. R. Halmos Managing Editor. c. C. Moore

Graduate Texts in Mathematics. Editorial Board. F. W. Gehring P. R. Halmos Managing Editor. c. C. Moore Graduate Texts in Mathematics 49 Editorial Board F. W. Gehring P. R. Halmos Managing Editor c. C. Moore K. W. Gruenberg A.J. Weir Linear Geometry 2nd Edition Springer Science+Business Media, LLC K. W.

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

LECTURE 8: DETERMINANTS AND PERMUTATIONS

LECTURE 8: DETERMINANTS AND PERMUTATIONS LECTURE 8: DETERMINANTS AND PERMUTATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Determinants In the last lecture, we saw some applications of invertible matrices We would now like to describe how

More information

Multiple Input Multiple Output (MIMO) Operation Principles

Multiple Input Multiple Output (MIMO) Operation Principles Afriyie Abraham Kwabena Multiple Input Multiple Output (MIMO) Operation Principles Helsinki Metropolia University of Applied Sciences Bachlor of Engineering Information Technology Thesis June 0 Abstract

More information

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration

Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Quotients of the Malvenuto-Reutenauer algebra and permutation enumeration Ira M. Gessel Department of Mathematics Brandeis University Sapienza Università di Roma July 10, 2013 Exponential generating functions

More information

Permutation group and determinants. (Dated: September 19, 2018)

Permutation group and determinants. (Dated: September 19, 2018) Permutation group and determinants (Dated: September 19, 2018) 1 I. SYMMETRIES OF MANY-PARTICLE FUNCTIONS Since electrons are fermions, the electronic wave functions have to be antisymmetric. This chapter

More information

5 Symmetric and alternating groups

5 Symmetric and alternating groups MTHM024/MTH714U Group Theory Notes 5 Autumn 2011 5 Symmetric and alternating groups In this section we examine the alternating groups A n (which are simple for n 5), prove that A 5 is the unique simple

More information

CARD GAMES AND CRYSTALS

CARD GAMES AND CRYSTALS CARD GAMES AND CRYSTALS This is the extended version of a talk I gave at KIDDIE (graduate student colloquium) in April 2011. I wish I could give this version, but there wasn t enough time, so I left out

More information

THE SIGN OF A PERMUTATION

THE SIGN OF A PERMUTATION THE SIGN OF A PERMUTATION KEITH CONRAD 1. Introduction Throughout this discussion, n 2. Any cycle in S n is a product of transpositions: the identity (1) is (12)(12), and a k-cycle with k 2 can be written

More information

Counting Permutations with Even Valleys and Odd Peaks

Counting Permutations with Even Valleys and Odd Peaks Counting Permutations with Even Valleys and Odd Peaks Ira M. Gessel Department of Mathematics Brandeis University IMA Workshop Geometric and Enumerative Combinatorics University of Minnesota, Twin Cities

More information

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors.

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors. Permutation Groups 5-9-2013 A permutation of a set X is a bijective function σ : X X The set of permutations S X of a set X forms a group under function composition The group of permutations of {1,2,,n}

More information

MAS336 Computational Problem Solving. Problem 3: Eight Queens

MAS336 Computational Problem Solving. Problem 3: Eight Queens MAS336 Computational Problem Solving Problem 3: Eight Queens Introduction Francis J. Wright, 2007 Topics: arrays, recursion, plotting, symmetry The problem is to find all the distinct ways of choosing

More information

On the isomorphism problem for Coxeter groups and related topics

On the isomorphism problem for Coxeter groups and related topics On the isomorphism problem for Coxeter groups and related topics Koji Nuida (AIST, Japan) Groups and Geometries @Bangalore, Dec. 18 & 20, 2012 Koji Nuida (AIST, Japan) On the isomorphism problem for Coxeter

More information

RIGIDITY OF COXETER GROUPS AND ARTIN GROUPS

RIGIDITY OF COXETER GROUPS AND ARTIN GROUPS RIGIDITY OF COXETER GROUPS AND ARTIN GROUPS NOEL BRADY 1, JONATHAN P. MCCAMMOND 2, BERNHARD MÜHLHERR, AND WALTER D. NEUMANN 3 Abstract. A Coxeter group is rigid if it cannot be defined by two nonisomorphic

More information

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups.

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. Permutations Let X be a finite set. A permutation of X is a bijection from X to itself. The set of all permutations

More information

Permutation groups, derangements and prime order elements

Permutation groups, derangements and prime order elements Permutation groups, derangements and prime order elements Tim Burness University of Southampton Isaac Newton Institute, Cambridge April 21, 2009 Overview 1. Introduction 2. Counting derangements: Jordan

More information

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 7 No. 1 (2018), pp. 37-50. c 2018 University of Isfahan www.combinatorics.ir www.ui.ac.ir PD-SETS FOR CODES RELATED

More information

A Signal Space Theory of Interferences Cancellation Systems

A Signal Space Theory of Interferences Cancellation Systems A Signal Space Theory of Interferences Cancellation Systems Osamu Ichiyoshi Human Network for Better 21 Century E-mail: osamu-ichiyoshi@muf.biglobe.ne.jp Abstract Interferences among signals from different

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Invertible matrices Theorem. 1. An elementary matrix is invertible. 2.

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

Determinants, Part 1

Determinants, Part 1 Determinants, Part We shall start with some redundant definitions. Definition. Given a matrix A [ a] we say that determinant of A is det A a. Definition 2. Given a matrix a a a 2 A we say that determinant

More information

Geometry: Fundamental Concepts And Applications By Alan Bass

Geometry: Fundamental Concepts And Applications By Alan Bass Geometry: Fundamental Concepts And Applications By Alan Bass If you're transitioning from algebra and want to know how the two maths are connected, Geometry: Fundamental Concepts and Applications Plane

More information

Matched filter. Contents. Derivation of the matched filter

Matched filter. Contents. Derivation of the matched filter Matched filter From Wikipedia, the free encyclopedia In telecommunications, a matched filter (originally known as a North filter [1] ) is obtained by correlating a known signal, or template, with an unknown

More information

Primitive permutation groups with finite stabilizers

Primitive permutation groups with finite stabilizers Primitive permutation groups with finite stabilizers Simon M. Smith City Tech, CUNY and The University of Western Australia Groups St Andrews 2013, St Andrews Primitive permutation groups A transitive

More information

Chapter 6.1. Cycles in Permutations

Chapter 6.1. Cycles in Permutations Chapter 6.1. Cycles in Permutations Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 6.1. Cycles in Permutations Math 184A / Fall 2017 1 / 27 Notations for permutations Consider a permutation in 1-line

More information

Tennessee Senior Bridge Mathematics

Tennessee Senior Bridge Mathematics A Correlation of to the Mathematics Standards Approved July 30, 2010 Bid Category 13-130-10 A Correlation of, to the Mathematics Standards Mathematics Standards I. Ways of Looking: Revisiting Concepts

More information

Lesson Plan: 18Weeks (from January 2018 to April 2018) Week 1, Day 3, January 3 Basic operations on Matrices and Properties

Lesson Plan: 18Weeks (from January 2018 to April 2018) Week 1, Day 3, January 3 Basic operations on Matrices and Properties Name of Assistant Professor: Rakhi Class and Section: B. Com- 2 nd Semester and Section-c Subject: Mathematics Paper: Elements of Business Mathematics - II Lesson Plan: 18Weeks (from January 2018 to April

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

A Novel Adaptive Method For The Blind Channel Estimation And Equalization Via Sub Space Method

A Novel Adaptive Method For The Blind Channel Estimation And Equalization Via Sub Space Method A Novel Adaptive Method For The Blind Channel Estimation And Equalization Via Sub Space Method Pradyumna Ku. Mohapatra 1, Pravat Ku.Dash 2, Jyoti Prakash Swain 3, Jibanananda Mishra 4 1,2,4 Asst.Prof.Orissa

More information

Honors Algebra 2 Assignment Sheet - Chapter 1

Honors Algebra 2 Assignment Sheet - Chapter 1 Assignment Sheet - Chapter 1 #01: Read the text and the examples in your book for the following sections: 1.1, 1., and 1.4. Be sure you read and understand the handshake problem. Also make sure you copy

More information

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix Md. Mahmudul Hasan University of Information Technology & Sciences, Dhaka Abstract OFDM is an attractive modulation technique

More information

Quarter Turn Baxter Permutations

Quarter Turn Baxter Permutations Quarter Turn Baxter Permutations Kevin Dilks May 29, 2017 Abstract Baxter permutations are known to be in bijection with a wide number of combinatorial objects. Previously, it was shown that each of these

More information

9/4/2013. Math. Curriculum Council September 5, topics nouns What? rigor verbs How?

9/4/2013. Math. Curriculum Council September 5, topics nouns What? rigor verbs How? Math Curriculum Council September 5, 2013 Cognitive Change rigor verbs How? Content Change topics nouns What? 1 CHANGES TO STUDENT EXPECTATIONS NEW Standard Change of Grade Level Change of Strand Other

More information

Permutation Generation Method on Evaluating Determinant of Matrices

Permutation Generation Method on Evaluating Determinant of Matrices Article International Journal of Modern Mathematical Sciences, 2013, 7(1): 12-25 International Journal of Modern Mathematical Sciences Journal homepage:www.modernscientificpress.com/journals/ijmms.aspx

More information

Group Theory and SAGE: A Primer Robert A. Beezer University of Puget Sound c 2008 CC-A-SA License

Group Theory and SAGE: A Primer Robert A. Beezer University of Puget Sound c 2008 CC-A-SA License Group Theory and SAGE: A Primer Robert A. Beezer University of Puget Sound c 2008 CC-A-SA License Revision: December 9, 2008 Introduction This compilation collects SAGE commands that are useful for a student

More information

Image Enhancement using Image Fusion

Image Enhancement using Image Fusion Image Enhancement using Image Fusion Ajinkya A. Jadhav Student,ME(Electronics &Telecommunication) Mr. S. R. Khot Associate Professor, Department of Electronics, Mrs. P. S. Pise Associate Professor, Department

More information

Grades 6 8 Innoventure Components That Meet Common Core Mathematics Standards

Grades 6 8 Innoventure Components That Meet Common Core Mathematics Standards Grades 6 8 Innoventure Components That Meet Common Core Mathematics Standards Strand Ratios and Relationships The Number System Expressions and Equations Anchor Standard Understand ratio concepts and use

More information

Lecture 13 February 23

Lecture 13 February 23 EE/Stats 376A: Information theory Winter 2017 Lecture 13 February 23 Lecturer: David Tse Scribe: David L, Tong M, Vivek B 13.1 Outline olar Codes 13.1.1 Reading CT: 8.1, 8.3 8.6, 9.1, 9.2 13.2 Recap -

More information

Measure Preserving Isomorphisms

Measure Preserving Isomorphisms Gen. Math. Notes, Vol. 29, No., July 205, pp.-5 ISSN 229-784; Copyright c ICSRS Publication, 205 www.i-csrs.org Available free online at http://www.geman.in Measure Preserving Isomorphisms M. Gheytaran

More information

Page 1 of 52 Youtube.com/c/StayLearningNewdelhi

Page 1 of 52  Youtube.com/c/StayLearningNewdelhi Page 1 of 52 www.vijayadarsh.com Youtube.com/c/StayLearningNewdelhi Contact@vijayAdarsh.com +919268373738 About StayLearning StayLearning (a Division of AASS) believes in educating their students with

More information

Lecture 2.3: Symmetric and alternating groups

Lecture 2.3: Symmetric and alternating groups Lecture 2.3: Symmetric and alternating groups Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

More information

The Place of Group Theory in Decision-Making in Organizational Management A case of 16- Puzzle

The Place of Group Theory in Decision-Making in Organizational Management A case of 16- Puzzle IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 6 (Sep. - Oct. 2013), PP 17-22 The Place of Group Theory in Decision-Making in Organizational Management A case

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set CSE21: Lecture 3 1 Reminder Piazza forum address: http://piazza.com/ucsd/summer2013/cse21/hom e Notes on

More information

Realizing Strategies for winning games. Senior Project Presented by Tiffany Johnson Math 498 Fall 1999

Realizing Strategies for winning games. Senior Project Presented by Tiffany Johnson Math 498 Fall 1999 Realizing Strategies for winning games Senior Project Presented by Tiffany Johnson Math 498 Fall 1999 Outline of Project Briefly show how math relates to popular board games in playing surfaces & strategies

More information

Elementary functions for association schemes on GAP

Elementary functions for association schemes on GAP Elementary functions for association schemes on GAP Akihide Hanaki October 8, 2013 You can get GAP at http://www.gap-system.org/. We suppose the version of GAP is 4.x. Some functions need the package grape

More information

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008

Connected Permutations, Hypermaps and Weighted Dyck Words. Robert Cori Mini course, Maps Hypermaps february 2008 1 Connected Permutations, Hypermaps and Weighted Dyck Words 2 Why? Graph embeddings Nice bijection by Patrice Ossona de Mendez and Pierre Rosenstiehl. Deduce enumerative results. Extensions? 3 Cycles (or

More information

Game Theory. Chapter 2 Solution Methods for Matrix Games. Instructor: Chih-Wen Chang. Chih-Wen NCKU. Game Theory, Ch2 1

Game Theory. Chapter 2 Solution Methods for Matrix Games. Instructor: Chih-Wen Chang. Chih-Wen NCKU. Game Theory, Ch2 1 Game Theory Chapter 2 Solution Methods for Matrix Games Instructor: Chih-Wen Chang Chih-Wen Chang @ NCKU Game Theory, Ch2 1 Contents 2.1 Solution of some special games 2.2 Invertible matrix games 2.3 Symmetric

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

Adaptive Sampling and Processing of Ultrasound Images

Adaptive Sampling and Processing of Ultrasound Images Adaptive Sampling and Processing of Ultrasound Images Paul Rodriguez V. and Marios S. Pattichis image and video Processing and Communication Laboratory (ivpcl) Department of Electrical and Computer Engineering,

More information

DOWNLINK TRANSMITTER ADAPTATION BASED ON GREEDY SINR MAXIMIZATION. Dimitrie C. Popescu, Shiny Abraham, and Otilia Popescu

DOWNLINK TRANSMITTER ADAPTATION BASED ON GREEDY SINR MAXIMIZATION. Dimitrie C. Popescu, Shiny Abraham, and Otilia Popescu DOWNLINK TRANSMITTER ADAPTATION BASED ON GREEDY SINR MAXIMIZATION Dimitrie C Popescu, Shiny Abraham, and Otilia Popescu ECE Department Old Dominion University 231 Kaufman Hall Norfol, VA 23452, USA ABSTRACT

More information

Lecture 3 Complex Exponential Signals

Lecture 3 Complex Exponential Signals Lecture 3 Complex Exponential Signals Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/1 1 Review of Complex Numbers Using Euler s famous formula for the complex exponential The

More information

BUTTERFLY CURVE THEOREMS IN PSEUDO-EUCLIDEAN PLANE

BUTTERFLY CURVE THEOREMS IN PSEUDO-EUCLIDEAN PLANE Mathematica Pannonica 22/1 (2011), 119 125 BUTTERFLY CURVE THEOREMS IN PSEUDO-EUCLIDEAN PLANE A. Sliepčević University of Zagreb, Faculty of Civil Engineering, Kačićeva 26, 10000 Zagreb, Croatia E. Jurkin

More information

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering EIE2106 Signal and System Analysis Lab 2 Fourier series 1. Objective The goal of this laboratory exercise is to

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic Jeremy R. Johnson 1 Introduction Objective: To become familiar with modular arithmetic and some key algorithmic constructions that

More information

CHARACTERIZATION OF RINGS USING QUASIPROJECTIVE MODULES. II

CHARACTERIZATION OF RINGS USING QUASIPROJECTIVE MODULES. II PROCEEDINGS OF THE AMERICAN MATHEMATICAL Volume 28, Number 2, May 1971 SOCIETY CHARACTERIZATION OF RINGS USING QUASIPROJECTIVE MODULES. II JONATHAN S. GOLAN1 Abstract. Semiperfect rings, semihereditary

More information

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 1 Information Transmission Chapter 5, Block codes FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY 2 Methods of channel coding For channel coding (error correction) we have two main classes of codes,

More information

Thank you! Estimation + Information Theory. ELEC 3004: Systems 1 June

Thank you! Estimation + Information Theory.   ELEC 3004: Systems 1 June http://elec3004.org Estimation + Information Theory 2014 School of Information Technology and Electrical Engineering at The University of Queensland Thank you! ELEC 3004: Systems 1 June 2015 2 1 Schedule

More information

Welcome Booklet. Version 5

Welcome Booklet. Version 5 Welcome Booklet Version 5 Visit the Learning Center Find all the resources you need to learn and use Sketchpad videos, tutorials, tip sheets, sample activities, and links to online resources, services,

More information

A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA

A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA JOEL LOUWSMA, ADILSON EDUARDO PRESOTO, AND ALAN TARR Abstract. Krakowski and Regev found a basis of polynomial identities satisfied

More information

Analysis on the Properties of a Permutation Group

Analysis on the Properties of a Permutation Group International Journal of Theoretical and Applied Mathematics 2017; 3(1): 19-24 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20170301.13 Analysis on the Properties of a Permutation

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Table of Contents. Frequently Used Abbreviation... xvii

Table of Contents. Frequently Used Abbreviation... xvii GPS Satellite Surveying, 2 nd Edition Alfred Leick Department of Surveying Engineering, University of Maine John Wiley & Sons, Inc. 1995 (Navtech order #1028) Table of Contents Preface... xiii Frequently

More information

The Formula for Sinusoidal Signals

The Formula for Sinusoidal Signals The Formula for I The general formula for a sinusoidal signal is x(t) =A cos(2pft + f). I A, f, and f are parameters that characterize the sinusoidal sinal. I A - Amplitude: determines the height of the

More information

CODE division multiple access (CDMA) systems suffer. A Blind Adaptive Decorrelating Detector for CDMA Systems

CODE division multiple access (CDMA) systems suffer. A Blind Adaptive Decorrelating Detector for CDMA Systems 1530 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 8, OCTOBER 1998 A Blind Adaptive Decorrelating Detector for CDMA Systems Sennur Ulukus, Student Member, IEEE, and Roy D. Yates, Member,

More information

The mathematics of the flip and horseshoe shuffles

The mathematics of the flip and horseshoe shuffles The mathematics of the flip and horseshoe shuffles Steve Butler Persi Diaconis Ron Graham Abstract We consider new types of perfect shuffles wherein a deck is split in half, one half of the deck is reversed,

More information

VENTILATION CONTROL OF THE BLANKA TUNNEL: A MATHEMATICAL PROGRAMMING APPROACH

VENTILATION CONTROL OF THE BLANKA TUNNEL: A MATHEMATICAL PROGRAMMING APPROACH - 19 - VENTILATION CONTROL OF THE BLANKA TUNNEL: A MATHEMATICAL PROGRAMMING APPROACH Pořízek J. 1, Zápařka J. 1, Ferkl L. 1 Satra, Czech Republic Feramat Cybernetics, Czech Republic ABSTRACT The Blanka

More information

7 Days: August 17 August 27. Unit 1: Two-Dimensional Figures

7 Days: August 17 August 27. Unit 1: Two-Dimensional Figures 1 st Trimester Operations and Algebraic Thinking (OA) Geometry (G) OA.3.5 G.1.1 G.1.2 G.1.3 Generate and analyze patterns. Generate a number or shape pattern that follows a given rule. Identify apparent

More information

The Fano Plane as an Octonionic Multiplication Table

The Fano Plane as an Octonionic Multiplication Table The Fano Plane as an Octonionic Multiplication Table Peter Killgore June 9, 2014 1 Introduction When considering finite geometries, an obvious question to ask is what applications such geometries have.

More information

Removal of ocular artifacts from EEG signals using adaptive threshold PCA and Wavelet transforms

Removal of ocular artifacts from EEG signals using adaptive threshold PCA and Wavelet transforms Available online at www.interscience.in Removal of ocular artifacts from s using adaptive threshold PCA and Wavelet transforms P. Ashok Babu 1, K.V.S.V.R.Prasad 2 1 Narsimha Reddy Engineering College,

More information

CSC475 Music Information Retrieval

CSC475 Music Information Retrieval CSC475 Music Information Retrieval Sinusoids and DSP notation George Tzanetakis University of Victoria 2014 G. Tzanetakis 1 / 38 Table of Contents I 1 Time and Frequency 2 Sinusoids and Phasors G. Tzanetakis

More information

ECE411 - Laboratory Exercise #1

ECE411 - Laboratory Exercise #1 ECE411 - Laboratory Exercise #1 Introduction to Matlab/Simulink This laboratory exercise is intended to provide a tutorial introduction to Matlab/Simulink. Simulink is a Matlab toolbox for analysis/simulation

More information

Section 2.1 Factors and Multiples

Section 2.1 Factors and Multiples Section 2.1 Factors and Multiples When you want to prepare a salad, you select certain ingredients (lettuce, tomatoes, broccoli, celery, olives, etc.) to give the salad a specific taste. You can think

More information

On the use of synthetic images for change detection accuracy assessment

On the use of synthetic images for change detection accuracy assessment On the use of synthetic images for change detection accuracy assessment Hélio Radke Bittencourt 1, Daniel Capella Zanotta 2 and Thiago Bazzan 3 1 Departamento de Estatística, Pontifícia Universidade Católica

More information

THREE LECTURES ON SQUARE-TILED SURFACES (PRELIMINARY VERSION) Contents

THREE LECTURES ON SQUARE-TILED SURFACES (PRELIMINARY VERSION) Contents THREE LECTURES ON SQUARE-TILED SURFACES (PRELIMINARY VERSION) CARLOS MATHEUS Abstract. This text corresponds to a minicourse delivered on June 11, 12 & 13, 2018 during the summer school Teichmüller dynamics,

More information

NSCAS - Math Table of Specifications

NSCAS - Math Table of Specifications NSCAS - Math Table of Specifications MA 3. MA 3.. NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics

More information

Drum Transcription Based on Independent Subspace Analysis

Drum Transcription Based on Independent Subspace Analysis Report for EE 391 Special Studies and Reports for Electrical Engineering Drum Transcription Based on Independent Subspace Analysis Yinyi Guo Center for Computer Research in Music and Acoustics, Stanford,

More information

Outline. Sets of Gluing Data. Constructing Manifolds. Lecture 3 - February 3, PM

Outline. Sets of Gluing Data. Constructing Manifolds. Lecture 3 - February 3, PM Constructing Manifolds Lecture 3 - February 3, 2009-1-2 PM Outline Sets of gluing data The cocycle condition Parametric pseudo-manifolds (PPM s) Conclusions 2 Let n and k be integers such that n 1 and

More information

Course Overview. Dr. Edmund Lam. Department of Electrical and Electronic Engineering The University of Hong Kong

Course Overview. Dr. Edmund Lam. Department of Electrical and Electronic Engineering The University of Hong Kong Course Dr. Edmund Lam Department of Electrical and Electronic Engineering The University of Hong Kong ELEC8601: Advanced Topics in Image Processing (Second Semester, 2013 14) http://www.eee.hku.hk/ work8601

More information

HANDS-ON TRANSFORMATIONS: DILATIONS AND SIMILARITY (Poll Code 44273)

HANDS-ON TRANSFORMATIONS: DILATIONS AND SIMILARITY (Poll Code 44273) HANDS-ON TRANSFORMATIONS: DILATIONS AND SIMILARITY (Poll Code 44273) Presented by Shelley Kriegler President, Center for Mathematics and Teaching shelley@mathandteaching.org Fall 2014 8.F.1 8.G.3 8.G.4

More information

REVIEW, EVALUATION AND PROPOSALS FOR SVPWM MODULATION TECNIQUES Marcos B. Ketzer 1, Maurício de Campos 2, Manuel M. P. Reimbold 3

REVIEW, EVALUATION AND PROPOSALS FOR SVPWM MODULATION TECNIQUES Marcos B. Ketzer 1, Maurício de Campos 2, Manuel M. P. Reimbold 3 Marcos B. Ketzer 1, Maurício de Campos 2, Manuel M. P. Reimbold 3 1 UNIJUÍ, Ijuí, Brazil, marcos.ketzer@unijui.edu.br 2 UNIJUÍ, Ijuí, Brazil, campos@unijui.edu.br 3 UNIJUÍ, Ijuí, Brazil, manolo@unijui.edu.br

More information

Permutations. = f 1 f = I A

Permutations. = f 1 f = I A Permutations. 1. Definition (Permutation). A permutation of a set A is a bijective function f : A A. The set of all permutations of A is denoted by Perm(A). 2. If A has cardinality n, then Perm(A) has

More information

Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 2010

Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 2010 Computational aspects of two-player zero-sum games Course notes for Computational Game Theory Section 3 Fall 21 Peter Bro Miltersen November 1, 21 Version 1.3 3 Extensive form games (Game Trees, Kuhn Trees)

More information

MULTIPATH fading could severely degrade the performance

MULTIPATH fading could severely degrade the performance 1986 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 12, DECEMBER 2005 Rate-One Space Time Block Codes With Full Diversity Liang Xian and Huaping Liu, Member, IEEE Abstract Orthogonal space time block

More information

The mathematics of the flip and horseshoe shuffles

The mathematics of the flip and horseshoe shuffles The mathematics of the flip and horseshoe shuffles Steve Butler Persi Diaconis Ron Graham Abstract We consider new types of perfect shuffles wherein a deck is split in half, one half of the deck is reversed,

More information

SCATTERING POLARIMETRY PART 1. Dr. A. Bhattacharya (Slide courtesy Prof. E. Pottier and Prof. L. Ferro-Famil)

SCATTERING POLARIMETRY PART 1. Dr. A. Bhattacharya (Slide courtesy Prof. E. Pottier and Prof. L. Ferro-Famil) SCATTERING POLARIMETRY PART 1 Dr. A. Bhattacharya (Slide courtesy Prof. E. Pottier and Prof. L. Ferro-Famil) 2 That s how it looks! Wave Polarisation An electromagnetic (EM) plane wave has time-varying

More information

Lecture 3 Presentations and more Great Groups

Lecture 3 Presentations and more Great Groups Lecture Presentations and more Great Groups From last time: A subset of elements S G with the property that every element of G can be written as a finite product of elements of S and their inverses is

More information

IN RECENT years, wireless multiple-input multiple-output

IN RECENT years, wireless multiple-input multiple-output 1936 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004 On Strategies of Multiuser MIMO Transmit Signal Processing Ruly Lai-U Choi, Michel T. Ivrlač, Ross D. Murch, and Wolfgang

More information

4th Grade Mathematics Mathematics CC

4th Grade Mathematics Mathematics CC Course Description In Grade 4, instructional time should focus on five critical areas: (1) attaining fluency with multi-digit multiplication, and developing understanding of dividing to find quotients

More information

A Closed Form for False Location Injection under Time Difference of Arrival

A Closed Form for False Location Injection under Time Difference of Arrival A Closed Form for False Location Injection under Time Difference of Arrival Lauren M. Huie Mark L. Fowler lauren.huie@rl.af.mil mfowler@binghamton.edu Air Force Research Laboratory, Rome, N Department

More information

The Relationship between Permutation Groups and Permutation Polytopes

The Relationship between Permutation Groups and Permutation Polytopes The Relationship between Permutation Groups and Permutation Polytopes Shatha A. Salman University of Technology Applied Sciences department Baghdad-Iraq Batool A. Hameed University of Technology Applied

More information

A Group-theoretic Approach to Human Solving Strategies in Sudoku

A Group-theoretic Approach to Human Solving Strategies in Sudoku Colonial Academic Alliance Undergraduate Research Journal Volume 3 Article 3 11-5-2012 A Group-theoretic Approach to Human Solving Strategies in Sudoku Harrison Chapman University of Georgia, hchaps@gmail.com

More information

ORTHOGONAL space time block codes (OSTBC) from

ORTHOGONAL space time block codes (OSTBC) from 1104 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 3, MARCH 2009 On Optimal Quasi-Orthogonal Space Time Block Codes With Minimum Decoding Complexity Haiquan Wang, Member, IEEE, Dong Wang, Member,

More information

Partial Differentiation 1 Introduction

Partial Differentiation 1 Introduction Partial Differentiation 1 Introduction In the first part of this course you have met the idea of a derivative. To recap what this means, recall that if you have a function, z say, then the slope of the

More information