Automatic Generation of Constraints for Partial Symmetry Breaking

Size: px
Start display at page:

Download "Automatic Generation of Constraints for Partial Symmetry Breaking"

Transcription

1 Automatic Generation of Constraints for Partial Symmetry Breaking Karen Petrie and Christopher Jefferson

2 Overview How to break symmetries. How to find symmetries. How to choose which symmetries to break.

3 Magic Square = 15 = 15 = 15 = 15 = 15= 15 = 15 = 15

4 Magic Square = = 15 = = 15 = 15= 15 = 15 = 15

5 Magic Square

6 Magic Square

7 Magic Square

8 Magic Square

9 Magic Square A B C D E F G H I G D A H E B I F C ABCDEFGHI lex GDAHEBIFC

10 Magic Square

11 Magic Square X

12 Magic Square There are 8 symmetries in total Identity 90 left right X-axis swap Y-axis swap Major diagonal swap Minor diagonal swap

13 Crawford Ordering Add one lexicographic ordering constraint for every member of the symmetry group. Breaks all symmetry.

14 Crawford Ordering Problems often have a huge number of symmetries A 10x10 matrix with ``row and column'' symmetry has 13,168,189,440,000 symmetries.

15 Partial Symmetry Breaking Using a subset of the symmetry breaking constraints breaks some symmetry. Need to decide: How many constraints to use. Exactly which to use.

16 Now For Something Completely Different... We need to know the symmetries of a problem to apply any of this. Wouldn't it be great if we could detect them automatically?

17 Magic Square

18 Magic Square

19 Magic Square

20 Magic Square

21 Magic Square

22 Symmetry Generation Nauty and Saucy will find the symmetries of a graph. They both use a similar algorithm to find a set of generators for the group.

23 Magic Square Identity X-axis swap X 90 left right R Y-axis swap Diag swap 1 Diag swap 2

24 Magic Square Identity XX X-axis swap X 90 left R Y-axis swap XRR 180 RR Diag swap 1 XR 90 right RRRR Diag swap 2 XRRR

25 Choosing Symmetry Breaking Constraints Now we have the group of symmetries. Represented as a small set of generators. How do we choose a subset to generate symmetry breaking constraints from?

26 Nauty Constraints Using the symmetries Nauty generates is the simplest option.

27 Random Symmetries 1e+10 1e+09 Random Nauty Basic Stabiliser Reduced ArityOne 1e+08 1e+07 x 1e Number of Constraints

28 Investigating the Nauty Constraints They appear to perform quite well, at least compared to a random set of symmetries. Let's figure out why!

29 Generators The symmetries that Nauty creates are generators for the group. As they ``represent'' all the group, should they create a good set of constraints.

30 Generators Sets of generators are no better, or worse, than an arbitrary set of symmetries. Checked over a range of problems.

31 Generators Some common sets of symmetry breaking constraints are generators. Most generator sets are bad There are equally good non-generator sets.

32 Generators

33 Generators

34 Generators

35 Why is Nauty so Successful? At this point we had to go back to the drawing board. Why is Nauty so successful?

36 Complete Symmetry Group We already know how to break this symmetry completely, with a linear number of constraints! But analysing this group can give us guidance.

37 Permutations A B C D E F G H

38 Permutations A B C D E F G H ABCDEFGH lex B...

39 Permutations A B C D E F G H ABCDEFGH lex AC...

40 Permutations A B C D E F G H ABCDEFGH lex ABD...

41 Permutations A B C D E F G H ABCDEFGH lex B... ABCDEFGH lex AC... ABCDEFGH lex ABD... ABCDEFGH lex ABCE... ABCDEFGH lex ABCDF... ABCDEFGH lex ABCDEG.. ABCDEFGH lex ABCDEFHG

42 Stabiliser Chains Internally, Nauty generates a `Stabiliser Chain' How Nauty represents the set of generators as it produces them.

43 Permutations A B C D E F G H ABCDEFGH lex B... ABCDEFGH lex AC... ABCDEFGH lex ABD... ABCDEFGH lex ABCE... ABCDEFGH lex ABCDF... ABCDEFGH lex ABCDEG.. ABCDEFGH lex ABCDEFHG

44 Random Permutations Let us consider a random permutation of n variables. There is a 1/n chance it maps the first variable to itself. There is a 1/n(n-1) chance it maps the first and second variable to themselves. We need the last symmetry exactly.

45 Magic Square A B C D E F G H I G D A H E B I F C ABCDEFGHI lex GDAHEBIFC

46 Magic Square A B C D E F G H I G D A H E B I F C ABCDEFGHI lex GDAHEBIFC

47 Magic Square A B C D E F G H I A D G B E H C F I ABCDEFGHI lex ADGBEHCFI

48 Magic Square A B C D E F G H I A D G B E H C F I ABCDEFGHI lex ADGBEHCFI

49 First Variable Pair ABCDEFGHI lex GDAHEBIFC A < G: Constraint true! A > G: Constraint false! A = G: Have to look at other variables.

50 First Variable Pair Only 1/d assignments are not decided by the first variable pair. In practice the symmetry breaking constraints and problem constraints are not so independent.

51 First Variable Pairs We want lots of different first variable pairs. Ideally we want a set of constraints which logically implies all possible first variable pairs. Nauty almost does this!

52 Stabiliser Chains Buried in Nauty is an optimisation condition which looks like: A < B We can weaken this to: A B And Nauty produces constraints which imply all the First Variable Pairs. And strictly more symmetries.

53 1e+10 1e+09 Random Nauty Basic Stabiliser Reduced ArityOne 1e+08 1e+07 1e Number of Constraints

54 Future Study more problems and more groups. Variables after the FVP still matter, so how should we choose them? Better understanding of which constraints to choose to get maximal coverage.

You ve seen them played in coffee shops, on planes, and

You ve seen them played in coffee shops, on planes, and Every Sudoku variation you can think of comes with its own set of interesting open questions There is math to be had here. So get working! Taking Sudoku Seriously Laura Taalman James Madison University

More information

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter.

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter. 28,800 Extremely Magic 5 5 Squares Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@uncc.edu

More information

Taking Sudoku Seriously

Taking Sudoku Seriously Taking Sudoku Seriously Laura Taalman, James Madison University You ve seen them played in coffee shops, on planes, and maybe even in the back of the room during class. These days it seems that everyone

More information

Chained Permutations. Dylan Heuer. North Dakota State University. July 26, 2018

Chained Permutations. Dylan Heuer. North Dakota State University. July 26, 2018 Chained Permutations Dylan Heuer North Dakota State University July 26, 2018 Three person chessboard Three person chessboard Three person chessboard Three person chessboard - Rearranged Two new families

More information

CMPS 12A Introduction to Programming Programming Assignment 5 In this assignment you will write a Java program that finds all solutions to the n-queens problem, for. Begin by reading the Wikipedia article

More information

Modelling Equidistant Frequency Permutation Arrays: An Application of Constraints to Mathematics

Modelling Equidistant Frequency Permutation Arrays: An Application of Constraints to Mathematics Modelling Equidistant Frequency Permutation Arrays: An Application of Constraints to Mathematics Sophie Huczynska, Paul McKay, Ian Miguel and Peter Nightingale 1 Introduction We used CP to contribute to

More information

Partitions and Permutations

Partitions and Permutations Chapter 5 Partitions and Permutations 5.1 Stirling Subset Numbers 5.2 Stirling Cycle Numbers 5.3 Inversions and Ascents 5.4 Derangements 5.5 Exponential Generating Functions 5.6 Posets and Lattices 1 2

More information

Applications of AI for Magic Squares

Applications of AI for Magic Squares Applications of AI for Magic Squares Jared Weed arxiv:1602.01401v1 [math.ho] 3 Feb 2016 Department of Mathematical Sciences Worcester Polytechnic Institute Worcester, Massachusetts 01609-2280 Email: jmweed@wpi.edu

More information

Discrete Structures Lecture Permutations and Combinations

Discrete Structures Lecture Permutations and Combinations Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

More information

The Mathematics Behind Sudoku Laura Olliverrie Based off research by Bertram Felgenhauer, Ed Russel and Frazer Jarvis. Abstract

The Mathematics Behind Sudoku Laura Olliverrie Based off research by Bertram Felgenhauer, Ed Russel and Frazer Jarvis. Abstract The Mathematics Behind Sudoku Laura Olliverrie Based off research by Bertram Felgenhauer, Ed Russel and Frazer Jarvis Abstract I will explore the research done by Bertram Felgenhauer, Ed Russel and Frazer

More information

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6 CS100: DISCRETE STRUCTURES Lecture 8 Counting - CH6 Lecture Overview 2 6.1 The Basics of Counting: THE PRODUCT RULE THE SUM RULE THE SUBTRACTION RULE THE DIVISION RULE 6.2 The Pigeonhole Principle. 6.3

More information

Algorithmique appliquée Projet UNO

Algorithmique appliquée Projet UNO Algorithmique appliquée Projet UNO Paul Dorbec, Cyril Gavoille The aim of this project is to encode a program as efficient as possible to find the best sequence of cards that can be played by a single

More information

In the game of Chess a queen can move any number of spaces in any linear direction: horizontally, vertically, or along a diagonal.

In the game of Chess a queen can move any number of spaces in any linear direction: horizontally, vertically, or along a diagonal. CMPS 12A Introduction to Programming Winter 2013 Programming Assignment 5 In this assignment you will write a java program finds all solutions to the n-queens problem, for 1 n 13. Begin by reading the

More information

Some results on Su Doku

Some results on Su Doku Some results on Su Doku Sourendu Gupta March 2, 2006 1 Proofs of widely known facts Definition 1. A Su Doku grid contains M M cells laid out in a square with M cells to each side. Definition 2. For every

More information

Grade 6 Math Circles. Math Jeopardy

Grade 6 Math Circles. Math Jeopardy Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 6 Math Circles November 28/29, 2017 Math Jeopardy Centre for Education in Mathematics and Computing This lessons covers all of the material

More information

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 006 Senior Preliminary Round Problems & Solutions 1. Exactly 57.4574% of the people replied yes when asked if they used BLEU-OUT face cream. The fewest

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 25.1 Introduction Today we re going to spend some time discussing game

More information

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other.

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other. A.Miller M475 Fall 2010 Homewor problems are due in class one wee from the day assigned (which is in parentheses. Please do not hand in the problems early. 1. (1-20 W A boo shelf holds 5 different English

More information

A Novel Approach to Solving N-Queens Problem

A Novel Approach to Solving N-Queens Problem A Novel Approach to Solving N-ueens Problem Md. Golam KAOSAR Department of Computer Engineering King Fahd University of Petroleum and Minerals Dhahran, KSA and Mohammad SHORFUZZAMAN and Sayed AHMED Department

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

CPSC 217 Assignment 3

CPSC 217 Assignment 3 CPSC 217 Assignment 3 Due: Friday November 24, 2017 at 11:55pm Weight: 7% Sample Solution Length: Less than 100 lines, including blank lines and some comments (not including the provided code) Individual

More information

LANDSCAPE SMOOTHING OF NUMERICAL PERMUTATION SPACES IN GENETIC ALGORITHMS

LANDSCAPE SMOOTHING OF NUMERICAL PERMUTATION SPACES IN GENETIC ALGORITHMS LANDSCAPE SMOOTHING OF NUMERICAL PERMUTATION SPACES IN GENETIC ALGORITHMS ABSTRACT The recent popularity of genetic algorithms (GA s) and their application to a wide range of problems is a result of their

More information

Year 5 Problems and Investigations Spring

Year 5 Problems and Investigations Spring Year 5 Problems and Investigations Spring Week 1 Title: Alternating chains Children create chains of alternating positive and negative numbers and look at the patterns in their totals. Skill practised:

More information

The Non Inverting Buffer

The Non Inverting Buffer The Non Inverting Buffer We now spend some time investigating useful circuit elements that do not directly implement Boolean functions. The first element is the non inverting buffer. This is logically

More information

ON THE ENUMERATION OF MAGIC CUBES*

ON THE ENUMERATION OF MAGIC CUBES* 1934-1 ENUMERATION OF MAGIC CUBES 833 ON THE ENUMERATION OF MAGIC CUBES* BY D. N. LEHMER 1. Introduction. Assume the cube with one corner at the origin and the three edges at that corner as axes of reference.

More information

The patterns considered here are black and white and represented by a rectangular grid of cells. Here is a typical pattern: [Redundant]

The patterns considered here are black and white and represented by a rectangular grid of cells. Here is a typical pattern: [Redundant] Pattern Tours The patterns considered here are black and white and represented by a rectangular grid of cells. Here is a typical pattern: [Redundant] A sequence of cell locations is called a path. A path

More information

Permutation group and determinants. (Dated: September 19, 2018)

Permutation group and determinants. (Dated: September 19, 2018) Permutation group and determinants (Dated: September 19, 2018) 1 I. SYMMETRIES OF MANY-PARTICLE FUNCTIONS Since electrons are fermions, the electronic wave functions have to be antisymmetric. This chapter

More information

! Denver, CO! Demystifying Computing with Magic, continued

! Denver, CO! Demystifying Computing with Magic, continued 2012-03-07! Denver, CO! Demystifying Computing with Magic, continued Special Session Overview Motivation The 7 magic tricks ú Real-Time 4x4 Magic Square ú Left/Right Game ú The Tricky Dice ú The Numbers

More information

Mathematics of Magic Squares and Sudoku

Mathematics of Magic Squares and Sudoku Mathematics of Magic Squares and Sudoku Introduction This article explains How to create large magic squares (large number of rows and columns and large dimensions) How to convert a four dimensional magic

More information

Mind Ninja The Game of Boundless Forms

Mind Ninja The Game of Boundless Forms Mind Ninja The Game of Boundless Forms Nick Bentley 2007-2008. email: nickobento@gmail.com Overview Mind Ninja is a deep board game for two players. It is 2007 winner of the prestigious international board

More information

Local search algorithms

Local search algorithms Local search algorithms Some types of search problems can be formulated in terms of optimization We don t have a start state, don t care about the path to a solution We have an objective function that

More information

MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations)

MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations) MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations) The class will divide into four groups. Each group will have a different polygon

More information

G53CLP Constraint Logic Programming

G53CLP Constraint Logic Programming G53CLP Constraint Logic Programming Dr Rong Qu Modeling CSPs Case Study I Constraint Programming... represents one of the closest approaches computer science has yet made to the Holy Grail of programming:

More information

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting Discrete Mathematics: Logic Discrete Mathematics: Lecture 15: Counting counting combinatorics: the study of the number of ways to put things together into various combinations basic counting principles

More information

(a) Left Right (b) Left Right. Up Up 5-4. Row Down 0-5 Row Down 1 2. (c) B1 B2 (d) B1 B2 A1 4, 2-5, 6 A1 3, 2 0, 1

(a) Left Right (b) Left Right. Up Up 5-4. Row Down 0-5 Row Down 1 2. (c) B1 B2 (d) B1 B2 A1 4, 2-5, 6 A1 3, 2 0, 1 Economics 109 Practice Problems 2, Vincent Crawford, Spring 2002 In addition to these problems and those in Practice Problems 1 and the midterm, you may find the problems in Dixit and Skeath, Games of

More information

Introduction. The Mutando of Insanity by Érika. B. Roldán Roa

Introduction. The Mutando of Insanity by Érika. B. Roldán Roa The Mutando of Insanity by Érika. B. Roldán Roa Puzzles based on coloured cubes and other coloured geometrical figures have a long history in the recreational mathematical literature. Martin Gardner wrote

More information

CPCS 222 Discrete Structures I Counting

CPCS 222 Discrete Structures I Counting King ABDUL AZIZ University Faculty Of Computing and Information Technology CPCS 222 Discrete Structures I Counting Dr. Eng. Farag Elnagahy farahelnagahy@hotmail.com Office Phone: 67967 The Basics of counting

More information

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game

37 Game Theory. Bebe b1 b2 b3. a Abe a a A Two-Person Zero-Sum Game 37 Game Theory Game theory is one of the most interesting topics of discrete mathematics. The principal theorem of game theory is sublime and wonderful. We will merely assume this theorem and use it to

More information

Final Practice Problems: Dynamic Programming and Max Flow Problems (I) Dynamic Programming Practice Problems

Final Practice Problems: Dynamic Programming and Max Flow Problems (I) Dynamic Programming Practice Problems Final Practice Problems: Dynamic Programming and Max Flow Problems (I) Dynamic Programming Practice Problems To prepare for the final first of all study carefully all examples of Dynamic Programming which

More information

Techniques for Generating Sudoku Instances

Techniques for Generating Sudoku Instances Chapter Techniques for Generating Sudoku Instances Overview Sudoku puzzles become worldwide popular among many players in different intellectual levels. In this chapter, we are going to discuss different

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game.

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game. CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25 Homework #1 ( Due: Oct 10 ) Figure 1: The laser game. Task 1. [ 60 Points ] Laser Game Consider the following game played on an n n board,

More information

Introduction to Genetic Algorithms

Introduction to Genetic Algorithms Introduction to Genetic Algorithms Peter G. Anderson, Computer Science Department Rochester Institute of Technology, Rochester, New York anderson@cs.rit.edu http://www.cs.rit.edu/ February 2004 pg. 1 Abstract

More information

SPIRE MATHS Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All

SPIRE MATHS Stimulating, Practical, Interesting, Relevant, Enjoyable Maths For All Probability experiments TYPE: OBJECTIVE(S): DESCRIPTION: OVERVIEW: EQUIPMENT: Main Probability from experiments; repeating experiments gives different outcomes; and more generally means better probability

More information

CS1800: Permutations & Combinations. Professor Kevin Gold

CS1800: Permutations & Combinations. Professor Kevin Gold CS1800: Permutations & Combinations Professor Kevin Gold Permutations A permutation is a reordering of something. In the context of counting, we re interested in the number of ways to rearrange some items.

More information

BMT 2018 Combinatorics Test Solutions March 18, 2018

BMT 2018 Combinatorics Test Solutions March 18, 2018 . Bob has 3 different fountain pens and different ink colors. How many ways can he fill his fountain pens with ink if he can only put one ink in each pen? Answer: 0 Solution: He has options to fill his

More information

SF2972: Game theory. Plan. The top trading cycle (TTC) algorithm: reference

SF2972: Game theory. Plan. The top trading cycle (TTC) algorithm: reference SF2972: Game theory The 2012 Nobel prize in economics : awarded to Alvin E. Roth and Lloyd S. Shapley for the theory of stable allocations and the practice of market design The related branch of game theory

More information

A Group-theoretic Approach to Human Solving Strategies in Sudoku

A Group-theoretic Approach to Human Solving Strategies in Sudoku Colonial Academic Alliance Undergraduate Research Journal Volume 3 Article 3 11-5-2012 A Group-theoretic Approach to Human Solving Strategies in Sudoku Harrison Chapman University of Georgia, hchaps@gmail.com

More information

The mathematics of Septoku

The mathematics of Septoku The mathematics of Septoku arxiv:080.397v4 [math.co] Dec 203 George I. Bell gibell@comcast.net, http://home.comcast.net/~gibell/ Mathematics Subject Classifications: 00A08, 97A20 Abstract Septoku is a

More information

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

I.M.O. Winter Training Camp 2008: Invariants and Monovariants I.M.. Winter Training Camp 2008: Invariants and Monovariants n math contests, you will often find yourself trying to analyze a process of some sort. For example, consider the following two problems. Sample

More information

SF2972: Game theory. Introduction to matching

SF2972: Game theory. Introduction to matching SF2972: Game theory Introduction to matching The 2012 Nobel Memorial Prize in Economic Sciences: awarded to Alvin E. Roth and Lloyd S. Shapley for the theory of stable allocations and the practice of market

More information

10/5/2015. Constraint Satisfaction Problems. Example: Cryptarithmetic. Example: Map-coloring. Example: Map-coloring. Constraint Satisfaction Problems

10/5/2015. Constraint Satisfaction Problems. Example: Cryptarithmetic. Example: Map-coloring. Example: Map-coloring. Constraint Satisfaction Problems 0/5/05 Constraint Satisfaction Problems Constraint Satisfaction Problems AIMA: Chapter 6 A CSP consists of: Finite set of X, X,, X n Nonempty domain of possible values for each variable D, D, D n where

More information

Adventures with Rubik s UFO. Bill Higgins Wittenberg University

Adventures with Rubik s UFO. Bill Higgins Wittenberg University Adventures with Rubik s UFO Bill Higgins Wittenberg University Introduction Enro Rubik invented the puzzle which is now known as Rubik s Cube in the 1970's. More than 100 million cubes have been sold worldwide.

More information

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

Solutions to Exercises Chapter 6: Latin squares and SDRs

Solutions to Exercises Chapter 6: Latin squares and SDRs Solutions to Exercises Chapter 6: Latin squares and SDRs 1 Show that the number of n n Latin squares is 1, 2, 12, 576 for n = 1, 2, 3, 4 respectively. (b) Prove that, up to permutations of the rows, columns,

More information

Image Enhancement using Image Fusion

Image Enhancement using Image Fusion Image Enhancement using Image Fusion Ajinkya A. Jadhav Student,ME(Electronics &Telecommunication) Mr. S. R. Khot Associate Professor, Department of Electronics, Mrs. P. S. Pise Associate Professor, Department

More information

Solving the Social Golfer Problem with a GRASP

Solving the Social Golfer Problem with a GRASP Solving the Social Golfer Problem with a GRASP Markus Triska Nysret Musliu Received: date / Accepted: date Abstract The Social Golfer Problem (SGP) is a combinatorial optimization problem that exhibits

More information

Randomized Algorithms

Randomized Algorithms Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Randomized Algorithms Randomized Algorithms 1 Applications: Simple Algorithms and

More information

Latin Squares for Elementary and Middle Grades

Latin Squares for Elementary and Middle Grades Latin Squares for Elementary and Middle Grades Yul Inn Fun Math Club email: Yul.Inn@FunMathClub.com web: www.funmathclub.com Abstract: A Latin square is a simple combinatorial object that arises in many

More information

The Expected Number Of Dice Rolls To Get YAHTZEE

The Expected Number Of Dice Rolls To Get YAHTZEE POTW #- YAHTZEE The Expected Number Of Dice Rolls To Get YAHTZEE John Snyder, FSA January, 0 :0 EST Problem For those not familiar, YAHTZEE is a game played with five standard dice where each player completes

More information

Chapter 8. Lesson a. (2x+3)(x+2) b. (2x+1)(3x+2) c. no solution d. (2x+y)(y+3) ; Conclusion. Not every expression can be factored.

Chapter 8. Lesson a. (2x+3)(x+2) b. (2x+1)(3x+2) c. no solution d. (2x+y)(y+3) ; Conclusion. Not every expression can be factored. Chapter 8 Lesson 8.1.1 8-1. a. (x+4)(y+x+) = xy+x +6x+4y+8 b. 18x +9x 8-. a. (x+3)(x+) b. (x+1)(3x+) c. no solution d. (x+y)(y+3) ; Conclusion. Not every expression can be factored. 8-3. a. (3x+1)(x+5)=6x

More information

Review I. October 14, 2008

Review I. October 14, 2008 Review I October 14, 008 If you put n + 1 pigeons in n pigeonholes then at least one hole would have more than one pigeon. If n(r 1 + 1 objects are put into n boxes, then at least one of the boxes contains

More information

Multitree Decoding and Multitree-Aided LDPC Decoding

Multitree Decoding and Multitree-Aided LDPC Decoding Multitree Decoding and Multitree-Aided LDPC Decoding Maja Ostojic and Hans-Andrea Loeliger Dept. of Information Technology and Electrical Engineering ETH Zurich, Switzerland Email: {ostojic,loeliger}@isi.ee.ethz.ch

More information

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation

MA/CSSE 473 Day 13. Student Questions. Permutation Generation. HW 6 due Monday, HW 7 next Thursday, Tuesday s exam. Permutation generation MA/CSSE 473 Day 13 Permutation Generation MA/CSSE 473 Day 13 HW 6 due Monday, HW 7 next Thursday, Student Questions Tuesday s exam Permutation generation 1 Exam 1 If you want additional practice problems

More information

Permutations and Combinations

Permutations and Combinations Motivating question Permutations and Combinations A) Rosen, Chapter 5.3 B) C) D) Permutations A permutation of a set of distinct objects is an ordered arrangement of these objects. : (1, 3, 2, 4) is a

More information

Southeastern European Regional Programming Contest Bucharest, Romania Vinnytsya, Ukraine October 21, Problem A Concerts

Southeastern European Regional Programming Contest Bucharest, Romania Vinnytsya, Ukraine October 21, Problem A Concerts Problem A Concerts File: A.in File: standard output Time Limit: 0.3 seconds (C/C++) Memory Limit: 128 megabytes John enjoys listening to several bands, which we shall denote using A through Z. He wants

More information

arxiv: v1 [cs.cc] 21 Jun 2017

arxiv: v1 [cs.cc] 21 Jun 2017 Solving the Rubik s Cube Optimally is NP-complete Erik D. Demaine Sarah Eisenstat Mikhail Rudoy arxiv:1706.06708v1 [cs.cc] 21 Jun 2017 Abstract In this paper, we prove that optimally solving an n n n Rubik

More information

AwesomeMath Admission Test A

AwesomeMath Admission Test A 1 (Before beginning, I d like to thank USAMTS for the template, which I modified to get this template) It would be beneficial to assign each square a value, and then make a few equalities. a b 3 c d e

More information

Weighted Polya Theorem. Solitaire

Weighted Polya Theorem. Solitaire Weighted Polya Theorem. Solitaire Sasha Patotski Cornell University ap744@cornell.edu December 15, 2015 Sasha Patotski (Cornell University) Weighted Polya Theorem. Solitaire December 15, 2015 1 / 15 Cosets

More information

Introductory Probability

Introductory Probability Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

More information

More Recursion: NQueens

More Recursion: NQueens More Recursion: NQueens continuation of the recursion topic notes on the NQueens problem an extended example of a recursive solution CISC 121 Summer 2006 Recursion & Backtracking 1 backtracking Recursion

More information

Complete and Incomplete Algorithms for the Queen Graph Coloring Problem

Complete and Incomplete Algorithms for the Queen Graph Coloring Problem Complete and Incomplete Algorithms for the Queen Graph Coloring Problem Michel Vasquez and Djamal Habet 1 Abstract. The queen graph coloring problem consists in covering a n n chessboard with n queens,

More information

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Kyle A. Bishop Dustin L. Madsen December 15, 2009 Introduction The Sam Loyd puzzle was a 4 4 grid invented in the 1870 s with numbers 0 through 15 on each

More information

Staircase Rook Polynomials and Cayley s Game of Mousetrap

Staircase Rook Polynomials and Cayley s Game of Mousetrap Staircase Rook Polynomials and Cayley s Game of Mousetrap Michael Z. Spivey Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington 98416-1043 USA mspivey@ups.edu Phone:

More information

Using Figures - The Basics

Using Figures - The Basics Using Figures - The Basics by David Caprette, Rice University OVERVIEW To be useful, the results of a scientific investigation or technical project must be communicated to others in the form of an oral

More information

Slicing a Puzzle and Finding the Hidden Pieces

Slicing a Puzzle and Finding the Hidden Pieces Olivet Nazarene University Digital Commons @ Olivet Honors Program Projects Honors Program 4-1-2013 Slicing a Puzzle and Finding the Hidden Pieces Martha Arntson Olivet Nazarene University, mjarnt@gmail.com

More information

Lecture 20: Combinatorial Search (1997) Steven Skiena. skiena

Lecture 20: Combinatorial Search (1997) Steven Skiena.   skiena Lecture 20: Combinatorial Search (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Give an O(n lg k)-time algorithm

More information

Lecture 1, CS 2050, Intro Discrete Math for Computer Science

Lecture 1, CS 2050, Intro Discrete Math for Computer Science Lecture 1, 08--11 CS 050, Intro Discrete Math for Computer Science S n = 1++ 3+... +n =? Note: Recall that for the above sum we can also use the notation S n = n i. We will use a direct argument, in this

More information

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero. Math 2130-101 Test #2 for Section 101 October 14 th, 2009 ANSWE KEY 1. (10 points) Compute the curvature of r(t) = (t + 2, 3t + 4, 5t + 6). r (t) = (1, 3, 5) r (t) = 1 2 + 3 2 + 5 2 = 35 T(t) = 1 r (t)

More information

Lecture 6: Basics of Game Theory

Lecture 6: Basics of Game Theory 0368.4170: Cryptography and Game Theory Ran Canetti and Alon Rosen Lecture 6: Basics of Game Theory 25 November 2009 Fall 2009 Scribes: D. Teshler Lecture Overview 1. What is a Game? 2. Solution Concepts:

More information

PARITY, SYMMETRY, AND FUN PROBLEMS 1. April 16, 2017

PARITY, SYMMETRY, AND FUN PROBLEMS 1. April 16, 2017 PARITY, SYMMETRY, AND FUN PROBLEMS 1 April 16, 2017 Warm Up Problems Below are 11 numbers - six zeros and ve ones. Perform the following operation: cross out any two numbers. If they were equal, write

More information

Chapter 5 Backtracking. The Backtracking Technique The n-queens Problem The Sum-of-Subsets Problem Graph Coloring The 0-1 Knapsack Problem

Chapter 5 Backtracking. The Backtracking Technique The n-queens Problem The Sum-of-Subsets Problem Graph Coloring The 0-1 Knapsack Problem Chapter 5 Backtracking The Backtracking Technique The n-queens Problem The Sum-of-Subsets Problem Graph Coloring The 0-1 Knapsack Problem Backtracking maze puzzle following every path in maze until a dead

More information

Lecture 2.3: Symmetric and alternating groups

Lecture 2.3: Symmetric and alternating groups Lecture 2.3: Symmetric and alternating groups Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

More information

Adversarial Search Aka Games

Adversarial Search Aka Games Adversarial Search Aka Games Chapter 5 Some material adopted from notes by Charles R. Dyer, U of Wisconsin-Madison Overview Game playing State of the art and resources Framework Game trees Minimax Alpha-beta

More information

POST TEST KEY. Math in a Cultural Context*

POST TEST KEY. Math in a Cultural Context* POST TEST KEY Designing Patterns: Exploring Shapes and Area (Rhombus Module) Grade Level 3-5 Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: POST TEST KEY Grade: Teacher: School:

More information

Automatically Generating Puzzle Problems with Varying Complexity

Automatically Generating Puzzle Problems with Varying Complexity Automatically Generating Puzzle Problems with Varying Complexity Amy Chou and Justin Kaashoek Mentor: Rishabh Singh Fourth Annual PRIMES MIT Conference May 19th, 2014 The Motivation We want to help people

More information

Sudoku an alternative history

Sudoku an alternative history Sudoku an alternative history Peter J. Cameron p.j.cameron@qmul.ac.uk Talk to the Archimedeans, February 2007 Sudoku There s no mathematics involved. Use logic and reasoning to solve the puzzle. Instructions

More information

Why Should We Care? Everyone uses plotting But most people ignore or are unaware of simple principles Default plotting tools are not always the best

Why Should We Care? Everyone uses plotting But most people ignore or are unaware of simple principles Default plotting tools are not always the best Elementary Plots Why Should We Care? Everyone uses plotting But most people ignore or are unaware of simple principles Default plotting tools are not always the best More importantly, it is easy to lie

More information

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Agata Murawska (agmu@itu.dk) November 13, 2013 Exercise (6.1.2). A multiple-choice test contains 10 questions. There are

More information

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules Lecture 2: Sum rule, partition method, difference method, bijection method, product rules References: Relevant parts of chapter 15 of the Math for CS book. Discrete Structures II (Summer 2018) Rutgers

More information

Lecture 3. Direct Sequence Spread Spectrum Systems. COMM 907:Spread Spectrum Communications

Lecture 3. Direct Sequence Spread Spectrum Systems. COMM 907:Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 3 Direct Sequence Spread Spectrum Systems Performance of DSSSS with BPSK Modulation in presence of Interference (Jamming) Broadband Interference (Jamming):

More information

CSCI 2200 Foundations of Computer Science (FoCS) Solutions for Homework 7

CSCI 2200 Foundations of Computer Science (FoCS) Solutions for Homework 7 CSCI 00 Foundations of Computer Science (FoCS) Solutions for Homework 7 Homework Problems. [0 POINTS] Problem.4(e)-(f) [or F7 Problem.7(e)-(f)]: In each case, count. (e) The number of orders in which a

More information

mywbut.com Two agent games : alpha beta pruning

mywbut.com Two agent games : alpha beta pruning Two agent games : alpha beta pruning 1 3.5 Alpha-Beta Pruning ALPHA-BETA pruning is a method that reduces the number of nodes explored in Minimax strategy. It reduces the time required for the search and

More information

SudokuSplashZone. Overview 3

SudokuSplashZone. Overview 3 Overview 3 Introduction 4 Sudoku Game 4 Game grid 4 Cell 5 Row 5 Column 5 Block 5 Rules of Sudoku 5 Entering Values in Cell 5 Solver mode 6 Drag and Drop values in Solver mode 6 Button Inputs 7 Check the

More information

Optimal Results in Staged Self-Assembly of Wang Tiles

Optimal Results in Staged Self-Assembly of Wang Tiles Optimal Results in Staged Self-Assembly of Wang Tiles Rohil Prasad Jonathan Tidor January 22, 2013 Abstract The subject of self-assembly deals with the spontaneous creation of ordered systems from simple

More information

Backtracking. Chapter Introduction

Backtracking. Chapter Introduction Chapter 3 Backtracking 3.1 Introduction Backtracking is a very general technique that can be used to solve a wide variety of problems in combinatorial enumeration. Many of the algorithms to be found in

More information

Lane Detection in Automotive

Lane Detection in Automotive Lane Detection in Automotive Contents Introduction... 2 Image Processing... 2 Reading an image... 3 RGB to Gray... 3 Mean and Gaussian filtering... 5 Defining our Region of Interest... 6 BirdsEyeView Transformation...

More information

Anavilhanas Natural Reserve (about 4000 Km 2 )

Anavilhanas Natural Reserve (about 4000 Km 2 ) Anavilhanas Natural Reserve (about 4000 Km 2 ) A control room receives this alarm signal: what to do? adversarial patrolling with spatially uncertain alarm signals Nicola Basilico, Giuseppe De Nittis,

More information

Determinants, Part 1

Determinants, Part 1 Determinants, Part We shall start with some redundant definitions. Definition. Given a matrix A [ a] we say that determinant of A is det A a. Definition 2. Given a matrix a a a 2 A we say that determinant

More information

We will be releasing HW1 today It is due in 2 weeks (4/18 at 23:59pm) The homework is long

We will be releasing HW1 today It is due in 2 weeks (4/18 at 23:59pm) The homework is long We will be releasing HW1 today It is due in 2 weeks (4/18 at 23:59pm) The homework is long Requires proving theorems as well as coding Please start early Recitation sessions: Spark Tutorial and Clinic:

More information

Design and Analysis of Experiments 8E 2012 Montgomery

Design and Analysis of Experiments 8E 2012 Montgomery 1 The One-Quarter Fraction of the 2 k 2 The One-Quarter Fraction of the 2 6-2 Complete defining relation: I = ABCE = BCDF = ADEF 3 The One-Quarter Fraction of the 2 6-2 Uses of the alternate fractions

More information