FALL 2015 STA 2023 INTRODUCTORY STATISTICS-1 PROJECT INSTRUCTOR: VENKATESWARA RAO MUDUNURU

Size: px
Start display at page:

Download "FALL 2015 STA 2023 INTRODUCTORY STATISTICS-1 PROJECT INSTRUCTOR: VENKATESWARA RAO MUDUNURU"

Transcription

1 1 IMPORTANT: FALL 2015 STA 2023 INTRODUCTORY STATISTICS-1 PROJECT INSTRUCTOR: VENKATESWARA RAO MUDUNURU You should submit the answers for this project in the link provided on my website Link will be available from November 1, 2015 to submit your answers. The deadline to submit your project answers is November 27, 2015 by 11:59 PM. You can submit the project solutions only once. Please check your answers before you submit them. INSTRUCTIONS: 1. Favorable Card Selection: In the Table-3 of this document there are 26 alphabet assigned with a unique cards from a deck of cards as their favorable event. Students whose LAST NAME starts with A are assigned with BLACK-ACE as their favorable event. Similarly students whose LAST NAME starts with N are assigned with RED-7 as their favorable event, and so on. 2. Give your answers in two decimal places for the probabilities calculated in this project. Do not use fractions. 3. Follow the hints to answer your questions. 4. You may only submit this project once! Please check your work before you submit it. 5. Your section number must be between or between Use only two digits to mention your section. For example 21 or 43, etc. First Name: Last Name: Section: UID (Starting with U):

2 2 Experiment-1: Shuffle a deck of cards at least for 5 times and then lay out eight cards face up. Record the number of red cards or black cards according to your choice as given below in the Table-3. Reshuffle and lay out 8 cards again face up. Repeat this for 4 trials and fill the Table-1 with your observations in each trail and complete the Table with computing your probabilities in the third column of Table-1. Question-1: Based on your Last Name what is your favorable card for doing these experiments? {Hint: Black-A, Red-K, etc } Question-2: If X is the random variable of drawing your favorable card, is X a discrete random variable or a continuous random variable? {Hint: Give your answer as Discrete or Continuous} Question-3: When drawing a card from the deck of cards, what is the probability of drawing your favorable card? Question-4: When you draw 8 cards out of the deck. What is the probability that we have exactly 4 of your favorable color (red or black) cards? Let # of Fav Colors denote the Observed Number of your Favorable color (Red or Black) Cards in each trial. Let # of Fav Card denote the Observed number of your Favorable card facing up in each trial. Let P(# of Fav Card # of Fav Color) denote the Probability of your favorable card given that your favorable color showed up in each trial. Question-5: Complete the Table-1 with your results. Table 1 for Experiment-1 Trials # of Fav Colors # of Fav Card P(# of Fav Card # of Fav Colors) Venkat VnV

3 3 Experiment-2: Perform the following action thrice, and record how many favorable outcomes occurred after performing these steps for three times. Your event is drawing a favorable card mentioned below in Table-2. START STOP Do this experiment for 10 times. Remember that performing three steps is considered as one trial. You should do this for 10 times. Step-1: Draw a card from a standard deck, and note if whether the card drawn is your favorable outcome or not. Place the card back in the deck. Step-2: Be sure to shuffle the deck, draw for second time, note if whether the card drawn is your favorable outcome or not. Place the card back in the deck. Step-3: Be sure to shuffle the deck again, draw for third time, note if whether the card drawn is your favorable outcome or not. Place the card back in the deck. Now shuffle again, repeat these 3 steps for 10 times. Note the results based on your favorable card or not. Then record how many favorable events you have got. Your results will look like 0, 3, 1, 0, 2, 0, 0 TEN values. Remember your favorable event can happen only for one time in your three attempts, then record it as 1; OR if your favorable event can happen for two times in your three attempts, then record it as 2; OR if your favorable event can happen for all the three times in your three attempts, then record it as 3; OR it will not happen in all the three attempts, then record it as 0; Question-6: What will be your sample space in this experiment? [Note: Give your answer in { } with comma separation. [Hint: For example: {11,12,13}]] Venkat VnV Question-7: List all your outcomes in order for this experiment? [Note: Give your answer in { } with comma separation. [Hint: For example: {1,0,0,2,0,3 }] Question-8: What is the probability of your respective favorable outcome? Question-9: Let X be the random variable that your favorable outcome can happen.

4 4 Based on your results in doing this experiment-2, record your results in the following Table-2 Table 2 for Experiment-2 X Frequency Probability of X Question-10: What graph can well explain your experiment? Histogram or Bell Curve? Question-11: What is the expected value for your favorable event to occur? Question-12: What is the variance of your favorable event to occur? Question-13: What is the standard deviation of your favorable event to occur? Question-14: Is the probability distribution in Table-1 a plausible or not. [Hint: Give your Question-15: Is the probability distribution in Table-2 a plausible or not. [Hint: Give your Question-16: Is the probability distribution in Table-3 a plausible or not. [Hint: Give your

5 5 Table 3 Selection Table Last Name Starting with Card Color Card Choice A Black ACE B Red ACE C Black 2 D Red 2 E Black 3 F Red 3 G Black 4 H Red 4 I Black 5 J Red 5 K Black 6 L Red 6 M Black 7 N Red 7 O Black 8 P Red 8 Q Black 9 R Red 9 S Black 10 T Red 10 U Black JACK V Red JACK W Black QUEEN X Red QUEEN Y Black KING Z Red KING

Mr. Orchard s Math 141 WIR Test 3 Review Week 11

Mr. Orchard s Math 141 WIR Test 3 Review Week 11 1. The frequency distribution of the hourly wage rate (in dollars) of workers at a certain factory is given in the table below. Wage Rate $10.30 $10.40 $10.50 $10.60 $10.70 $10.80 Frequency 60 90 75 120

More information

November 11, Chapter 8: Probability: The Mathematics of Chance

November 11, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.

More information

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions:

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions: Math 58. Rumbos Fall 2008 1 Solutions to Exam 2 1. Give thorough answers to the following questions: (a) Define a Bernoulli trial. Answer: A Bernoulli trial is a random experiment with two possible, mutually

More information

Lesson Sampling Distribution of Differences of Two Proportions

Lesson Sampling Distribution of Differences of Two Proportions STATWAY STUDENT HANDOUT STUDENT NAME DATE INTRODUCTION The GPS software company, TeleNav, recently commissioned a study on proportions of people who text while they drive. The study suggests that there

More information

CHAPTER 6 PROBABILITY. Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes

CHAPTER 6 PROBABILITY. Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes CHAPTER 6 PROBABILITY Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes these two concepts a step further and explains their relationship with another statistical concept

More information

Statistics and Probability

Statistics and Probability Statistics and Probability Name Find the probability of the event. 1) If a single die is tossed once, find the probability of the following event. An even number. A) 1 6 B) 1 2 C) 3 D) 1 3 The pictograph

More information

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules + Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

More information

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1 Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Introduction to probability

Introduction to probability Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each

More information

Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

Discrete Random Variables Day 1

Discrete Random Variables Day 1 Discrete Random Variables Day 1 What is a Random Variable? Every probability problem is equivalent to drawing something from a bag (perhaps more than once) Like Flipping a coin 3 times is equivalent to

More information

APPENDIX 2.3: RULES OF PROBABILITY

APPENDIX 2.3: RULES OF PROBABILITY The frequentist notion of probability is quite simple and intuitive. Here, we ll describe some rules that govern how probabilities are combined. Not all of these rules will be relevant to the rest of this

More information

Discrete probability and the laws of chance

Discrete probability and the laws of chance Chapter 8 Discrete probability and the laws of chance 8.1 Multiple Events and Combined Probabilities 1 Determine the probability of each of the following events assuming that the die has equal probability

More information

12.1 The Fundamental Counting Principle and Permutations

12.1 The Fundamental Counting Principle and Permutations 12.1 The Fundamental Counting Principle and Permutations The Fundamental Counting Principle Two Events: If one event can occur in ways and another event can occur in ways then the number of ways both events

More information

Developed by Rashmi Kathuria. She can be reached at

Developed by Rashmi Kathuria. She can be reached at Developed by Rashmi Kathuria. She can be reached at . Photocopiable Activity 1: Step by step Topic Nature of task Content coverage Learning objectives Task Duration Arithmetic

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency MATH 1342 Final Exam Review Name Construct a frequency distribution for the given qualitative data. 1) The blood types for 40 people who agreed to participate in a medical study were as follows. 1) O A

More information

Probability Simulation User s Manual

Probability Simulation User s Manual Probability Simulation User s Manual Documentation of features and usage for Probability Simulation Copyright 2000 Corey Taylor and Rusty Wagner 1 Table of Contents 1. General Setup 3 2. Coin Section 4

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Week in Review #5 ( , 3.1)

Week in Review #5 ( , 3.1) Math 166 Week-in-Review - S. Nite 10/6/2012 Page 1 of 5 Week in Review #5 (2.3-2.4, 3.1) n( E) In general, the probability of an event is P ( E) =. n( S) Distinguishable Permutations Given a set of n objects

More information

7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count

7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count 7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count Probability deals with predicting the outcome of future experiments in a quantitative way. The experiments

More information

Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.

Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one

More information

Venn Diagram Problems

Venn Diagram Problems Venn Diagram Problems 1. In a mums & toddlers group, 15 mums have a daughter, 12 mums have a son. a) Julia says 15 + 12 = 27 so there must be 27 mums altogether. Explain why she could be wrong: b) There

More information

MAT Midterm Review

MAT Midterm Review MAT 120 - Midterm Review Name Identify the population and the sample. 1) When 1094 American households were surveyed, it was found that 67% of them owned two cars. Identify whether the statement describes

More information

23 Applications of Probability to Combinatorics

23 Applications of Probability to Combinatorics November 17, 2017 23 Applications of Probability to Combinatorics William T. Trotter trotter@math.gatech.edu Foreword Disclaimer Many of our examples will deal with games of chance and the notion of gambling.

More information

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly. Introduction to Statistics Math 1040 Sample Exam II Chapters 5-7 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of

More information

1. Determine whether the following experiments are binomial.

1. Determine whether the following experiments are binomial. Math 141 Exam 3 Review Problem Set Note: Not every topic is covered in this review. It is more heavily weighted on 8.4-8.6. Please also take a look at the previous Week in Reviews for more practice problems

More information

PROBABILITY Case of cards

PROBABILITY Case of cards WORKSHEET NO--1 PROBABILITY Case of cards WORKSHEET NO--2 Case of two die Case of coins WORKSHEET NO--3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure

More information

Class XII Chapter 13 Probability Maths. Exercise 13.1

Class XII Chapter 13 Probability Maths. Exercise 13.1 Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

More information

November 8, Chapter 8: Probability: The Mathematics of Chance

November 8, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol

More information

Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

More information

Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble

Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble is blue? Assumption: Each marble is just as likely to

More information

For this assignment, your job is to create a program that plays (a simplified version of) blackjack. Name your program blackjack.py.

For this assignment, your job is to create a program that plays (a simplified version of) blackjack. Name your program blackjack.py. CMPT120: Introduction to Computing Science and Programming I Instructor: Hassan Khosravi Summer 2012 Assignment 3 Due: July 30 th This assignment is to be done individually. ------------------------------------------------------------------------------------------------------------

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Laboratory 1: Uncertainty Analysis

Laboratory 1: Uncertainty Analysis University of Alabama Department of Physics and Astronomy PH101 / LeClair May 26, 2014 Laboratory 1: Uncertainty Analysis Hypothesis: A statistical analysis including both mean and standard deviation can

More information

Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

More information

3.6 Theoretical and Experimental Coin Tosses

3.6 Theoretical and Experimental Coin Tosses wwwck12org Chapter 3 Introduction to Discrete Random Variables 36 Theoretical and Experimental Coin Tosses Here you ll simulate coin tosses using technology to calculate experimental probability Then you

More information

NUMB3RS Activity: A Bit of Basic Blackjack. Episode: Double Down

NUMB3RS Activity: A Bit of Basic Blackjack. Episode: Double Down Teacher Page 1 : A Bit of Basic Blackjack Topic: Probability involving sampling without replacement Grade Level: 8-12 and dependent trials. Objective: Compute the probability of winning in several blackjack

More information

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY TJP TOP TIPS FOR IGCSE STATS & PROBABILITY Dr T J Price, 2011 First, some important words; know what they mean (get someone to test you): Mean the sum of the data values divided by the number of items.

More information

MATH-1110 FINAL EXAM FALL 2010

MATH-1110 FINAL EXAM FALL 2010 MATH-1110 FINAL EXAM FALL 2010 FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF EACH SHEET. SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST

More information

CS Programming Project 1

CS Programming Project 1 CS 340 - Programming Project 1 Card Game: Kings in the Corner Due: 11:59 pm on Thursday 1/31/2013 For this assignment, you are to implement the card game of Kings Corner. We will use the website as http://www.pagat.com/domino/kingscorners.html

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

When a number cube is rolled once, the possible numbers that could show face up are

When a number cube is rolled once, the possible numbers that could show face up are C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that

More information

TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

More information

Math 1070 Sample Exam 2

Math 1070 Sample Exam 2 University of Connecticut Department of Mathematics Math 1070 Sample Exam 2 Exam 2 will cover sections 4.6, 4.7, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3, 6.4, F.1, F.2, F.3 and F.4. This sample exam is intended to

More information

n(s)=the number of ways an event can occur, assuming all ways are equally likely to occur. p(e) = n(e) n(s)

n(s)=the number of ways an event can occur, assuming all ways are equally likely to occur. p(e) = n(e) n(s) The following story, taken from the book by Polya, Patterns of Plausible Inference, Vol. II, Princeton Univ. Press, 1954, p.101, is also quoted in the book by Szekely, Classical paradoxes of probability

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

Statistical House Edge Analysis for Proposed Casino Game Jacks

Statistical House Edge Analysis for Proposed Casino Game Jacks Statistical House Edge Analysis for Proposed Casino Game Jacks Prepared by: Precision Consulting Company, LLC Date: October 1, 2011 228 PARK AVENUE SOUTH NEW YORK, NEW YORK 10003 TELEPHONE 646/553-4730

More information

MATH 166 Exam II Sample Questions Use the histogram below to answer Questions 1-2: (NOTE: All heights are multiples of.05) 1. What is P (X 1)?

MATH 166 Exam II Sample Questions Use the histogram below to answer Questions 1-2: (NOTE: All heights are multiples of.05) 1. What is P (X 1)? MATH 166 Exam II Sample Questions Use the histogram below to answer Questions 1-2: (NOTE: All heights are multiples of.05) 1. What is P (X 1)? (a) 0.00525 (b) 0.0525 (c) 0.4 (d) 0.5 (e) 0.6 2. What is

More information

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

More information

More Probability: Poker Hands and some issues in Counting

More Probability: Poker Hands and some issues in Counting More Probability: Poker Hands and some issues in Counting Data From Thursday Everybody flipped a pair of coins and recorded how many times they got two heads, two tails, or one of each. We saw that the

More information

Chapter 10 Practice Test Probability

Chapter 10 Practice Test Probability Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its

More information

1. Theoretical probability is what should happen (based on math), while probability is what actually happens.

1. Theoretical probability is what should happen (based on math), while probability is what actually happens. Name: Date: / / QUIZ DAY! Fill-in-the-Blanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental

More information

Important Distributions 7/17/2006

Important Distributions 7/17/2006 Important Distributions 7/17/2006 Discrete Uniform Distribution All outcomes of an experiment are equally likely. If X is a random variable which represents the outcome of an experiment of this type, then

More information

Final Exam Review for Week in Review

Final Exam Review for Week in Review Final Exam Review for Week in Review. a) Consumers will buy units of a certain product if the price is $5 per unit. For each decrease of $3 in the price, they will buy more units. Suppliers will provide

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

Simulations. 1 The Concept

Simulations. 1 The Concept Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that can be

More information

Name Class Date. Introducing Probability Distributions

Name Class Date. Introducing Probability Distributions Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

More information

University of Connecticut Department of Mathematics

University of Connecticut Department of Mathematics University of Connecticut Department of Mathematics Math 1070 Sample Exam 2 Fall 2014 Name: Instructor Name: Section: Exam 2 will cover Sections 4.6-4.7, 5.3-5.4, 6.1-6.4, and F.1-F.3. This sample exam

More information

Math 14 Lecture Notes Ch. 3.3

Math 14 Lecture Notes Ch. 3.3 3.3 Two Basic Rules of Probability If we want to know the probability of drawing a 2 on the first card and a 3 on the 2 nd card from a standard 52-card deck, the diagram would be very large and tedious

More information

Geometric Distribution

Geometric Distribution Geometric Distribution Review Binomial Distribution Properties The experiment consists of n repeated trials. Each trial can result in just two possible outcomes. The probability of success is the same

More information

Math 447 Test 1 February 25, Spring 2016

Math 447 Test 1 February 25, Spring 2016 Math 447 Test 1 February 2, Spring 2016 No books, no notes, only scientific (non-graphic calculators. You must show work, unless the question is a true/false or fill-in-the-blank question. Name: Question

More information

CS 210 Fundamentals of Programming I Spring 2015 Programming Assignment 8

CS 210 Fundamentals of Programming I Spring 2015 Programming Assignment 8 CS 210 Fundamentals of Programming I Spring 2015 Programming Assignment 8 40 points Out: April 15/16, 2015 Due: April 27/28, 2015 (Monday/Tuesday, last day of class) Problem Statement Many people like

More information

ABE/ASE Standards Mathematics

ABE/ASE Standards Mathematics [Lesson Title] TEACHER NAME PROGRAM NAME Program Information Playing the Odds [Unit Title] Data Analysis and Probability NRS EFL(s) 3 4 TIME FRAME 240 minutes (double lesson) ABE/ASE Standards Mathematics

More information

Mini-Lecture 6.1 Discrete Random Variables

Mini-Lecture 6.1 Discrete Random Variables Mini-Lecture 6.1 Discrete Random Variables Objectives 1. Distinguish between discrete and continuous random variables 2. Identify discrete probability distributions 3. Construct probability histograms

More information

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

More information

Algebra 2- Statistics and Probability Chapter Review

Algebra 2- Statistics and Probability Chapter Review Name Block Date Algebra 2- Statistics and Probability Chapter Review Statistics- Calculator Allowed with Applicable Work For exercises 1-4, tell whether the data that can be gathered about each variable

More information

Basic Concepts of Probability and Counting Section 3.1

Basic Concepts of Probability and Counting Section 3.1 Basic Concepts of Probability and Counting Section 3.1 Summer 2013 - Math 1040 June 17 (1040) M 1040-3.1 June 17 1 / 12 Roadmap Basic Concepts of Probability and Counting Pages 128-137 Counting events,

More information

Activity 1: Play comparison games involving fractions, decimals and/or integers.

Activity 1: Play comparison games involving fractions, decimals and/or integers. Students will be able to: Lesson Fractions, Decimals, Percents and Integers. Play comparison games involving fractions, decimals and/or integers,. Complete percent increase and decrease problems, and.

More information

Objective: Determine empirical probability based on specific sample data. (AA21)

Objective: Determine empirical probability based on specific sample data. (AA21) Do Now: What is an experiment? List some experiments. What types of things does one take a "chance" on? Mar 1 3:33 PM Date: Probability - Empirical - By Experiment Objective: Determine empirical probability

More information

CSE231 Spring Updated 04/09/2019 Project 10: Basra - A Fishing Card Game

CSE231 Spring Updated 04/09/2019 Project 10: Basra - A Fishing Card Game CSE231 Spring 2019 Updated 04/09/2019 Project 10: Basra - A Fishing Card Game This assignment is worth 55 points (5.5% of the course grade) and must be completed and turned in before 11:59pm on April 15,

More information

Pan (7:30am) Juan (8:30am) Juan (9:30am) Allison (10:30am) Allison (11:30am) Mike L. (12:30pm) Mike C. (1:30pm) Grant (2:30pm)

Pan (7:30am) Juan (8:30am) Juan (9:30am) Allison (10:30am) Allison (11:30am) Mike L. (12:30pm) Mike C. (1:30pm) Grant (2:30pm) STAT 225 FALL 2012 EXAM ONE NAME Your Section (circle one): Pan (7:30am) Juan (8:30am) Juan (9:30am) Allison (10:30am) Allison (11:30am) Mike L. (12:30pm) Mike C. (1:30pm) Grant (2:30pm) Grant (3:30pm)

More information

CS 210 Fundamentals of Programming I Fall 2015 Programming Project 8

CS 210 Fundamentals of Programming I Fall 2015 Programming Project 8 CS 210 Fundamentals of Programming I Fall 2015 Programming Project 8 40 points Out: November 17, 2015 Due: December 3, 2015 (Thursday after Thanksgiving break) Problem Statement Many people like to visit

More information

Test 2 SOLUTIONS (Chapters 5 7)

Test 2 SOLUTIONS (Chapters 5 7) Test 2 SOLUTIONS (Chapters 5 7) 10 1. I have been sitting at my desk rolling a six-sided die (singular of dice), and counting how many times I rolled a 6. For example, after my first roll, I had rolled

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

More information

Lesson Lesson 3.7 ~ Theoretical Probability

Lesson Lesson 3.7 ~ Theoretical Probability Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left

More information

Unit 9: Probability Assignments

Unit 9: Probability Assignments Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

More information

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Canadian Mathematics Competition An activity of The Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Canadian Computing Competition for the Awards Tuesday, March

More information

CS Project 1 Fall 2017

CS Project 1 Fall 2017 Card Game: Poker - 5 Card Draw Due: 11:59 pm on Wednesday 9/13/2017 For this assignment, you are to implement the card game of Five Card Draw in Poker. The wikipedia page Five Card Draw explains the order

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 Introduction to Discrete Probability In the last note we considered the probabilistic experiment where we flipped a

More information

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E. Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

More information

Here are two situations involving chance:

Here are two situations involving chance: Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

More information

What are the chances?

What are the chances? What are the chances? Student Worksheet 7 8 9 10 11 12 TI-Nspire Investigation Student 90 min Introduction In probability, we often look at likelihood of events that are influenced by chance. Consider

More information

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Agata Murawska (agmu@itu.dk) November 13, 2013 Exercise (6.1.2). A multiple-choice test contains 10 questions. There are

More information

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Thursday, 4/17/14 The Addition Principle The Inclusion-Exclusion Principle The Pigeonhole Principle Reading: [J] 6.1, 6.8 [H] 3.5, 12.3 Exercises:

More information

Chapter 3: PROBABILITY

Chapter 3: PROBABILITY Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of

More information

Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5 {(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5 {(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)} Section 8: Random Variables and probability distributions of discrete random variables In the previous sections we saw that when we have numerical data, we can calculate descriptive statistics such as

More information

RANDOM EXPERIMENTS AND EVENTS

RANDOM EXPERIMENTS AND EVENTS Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1324 Review for Test 3 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the value(s) of the function on the given feasible region. 1) Find the

More information

MATH , Summer I Homework - 05

MATH , Summer I Homework - 05 MATH 2300-02, Summer I - 200 Homework - 05 Name... TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Due on Tuesday, October 26th ) True or False: If p remains constant

More information

Chapter 2 Integers. Math 20 Activity Packet Page 1

Chapter 2 Integers. Math 20 Activity Packet Page 1 Chapter 2 Integers Contents Chapter 2 Integers... 1 Introduction to Integers... 3 Adding Integers with Context... 5 Adding Integers Practice Game... 7 Subtracting Integers with Context... 9 Mixed Addition

More information

PROBLEM SET 2 Due: Friday, September 28. Reading: CLRS Chapter 5 & Appendix C; CLR Sections 6.1, 6.2, 6.3, & 6.6;

PROBLEM SET 2 Due: Friday, September 28. Reading: CLRS Chapter 5 & Appendix C; CLR Sections 6.1, 6.2, 6.3, & 6.6; CS231 Algorithms Handout #8 Prof Lyn Turbak September 21, 2001 Wellesley College PROBLEM SET 2 Due: Friday, September 28 Reading: CLRS Chapter 5 & Appendix C; CLR Sections 6.1, 6.2, 6.3, & 6.6; Suggested

More information

, -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.

, -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4. 4-1 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,

More information

2 Event is equally likely to occur or not occur. When all outcomes are equally likely, the theoretical probability that an event A will occur is:

2 Event is equally likely to occur or not occur. When all outcomes are equally likely, the theoretical probability that an event A will occur is: 10.3 TEKS a.1, a.4 Define and Use Probability Before You determined the number of ways an event could occur. Now You will find the likelihood that an event will occur. Why? So you can find real-life geometric

More information

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

More information

Finite Math Section 6_4 Solutions and Hints

Finite Math Section 6_4 Solutions and Hints Finite Math Section 6_4 Solutions and Hints by Brent M. Dingle for the book: Finite Mathematics, 7 th Edition by S. T. Tan. DO NOT PRINT THIS OUT AND TURN IT IN!!!!!!!! This is designed to assist you in

More information

Statistics 101: Section L Laboratory 10

Statistics 101: Section L Laboratory 10 Statistics 101: Section L Laboratory 10 This lab looks at the sampling distribution of the sample proportion pˆ and probabilities associated with sampling from a population with a categorical variable.

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information