6. Methods of Experimental Control. Chapter 6: Control Problems in Experimental Research

Size: px
Start display at page:

Download "6. Methods of Experimental Control. Chapter 6: Control Problems in Experimental Research"

Transcription

1 6. Methods of Experimental Control Chapter 6: Control Problems in Experimental Research 1

2 Goals Understand: Advantages/disadvantages of within- and between-subjects experimental designs Methods of controlling for group differences in between-subjects experimental designs. Counter-balancing techniques for controlling sequence effects in within-subjects experimental designs 2

3 Between-Subjects Experimental Design (single factor, 2 levels) Population Sampling Sample Random Assignment Condition 1 Condition 2 Group 1 Group 2 3

4 Within-Subjects Experimental Designs (single factor, 2 levels) Population Sampling Sample 1/2 1/2 Condition 1 Condition 2 Sample Sample 4

5 Between subjects designs Different groups of people assigned to each level of IV Requires more participants, but avoids sequence effects (e.g., practice or fatigue). Potential Validity Problem: Are the people in the groups the same to begin with? If not, group differences = a confound 5

6 Simple Random Assignment Technique for minimizing group differences. Works simultaneously on ALL variables that might lead to group differences. Very powerful. Simply divide P s among levels of IV in a random (not arbitrary!) way. NOT to be confused with random sampling! 6

7 An Aside: Randomness Random is not the same as arbitrary. Randomness can be thought of as systematically non-systematic. That is, you set up a procedure to eliminate any possible biases. Arbitrary procedures, such as deciding haphazardly who goes in which group, may contain unknown biases 7

8 An Aside: Randomness Two flavours of randomness: Random with replacement: All options are there on every trial (dice, coin tosses) Random without replacement: When an option is picked on a given trial, it is no longer available for later ones (cards) Use the latter with random sampling and random assignment 8

9 Simple Random Assignment Typically, subjects are shuffled randomly using computer-generated random numbers. Physical mixing can also be used. Careful! Must use a method that is random without replacement. Example: drawing cards from a deck without putting them back in the deck for the next P. Counter-Example: Flipping a coin is right out! That is random with replacement 9

10 Random Assignment in Excel: One IV List all levels of IV in column A, with n repeats, where n is the # of individuals who will be in each group. Create a list of random numbers, using =rand() in column B, then sort according to column B (cut and paste values) If all participants are known ahead of time, just paste the list into column C If participants are not known ahead of time, test them as they come in, in the order of the list. 10

11 Random Assignment in Excel: Two IVs List all levels of IV1 in column A, with n repeats, where n is the # of individuals who will be in each level of IV1. List all levels of IV2 in column B, with n repeats within each level of IV1, where n is the number of individuals in each condition. Rest is as for one IV. 11

12 Discussion / Questions 12

13 Block Random Assignment Technique used in between-subjects designs to avoid clumping of conditions at particular times. (Also used in within-subjects designs, but more on this later... ) In sequential testings, simple RA may create a confound: Example: One might end up doing most of Level 1 before any of Level 2. Whether such clumping is a problem depends on the likelihood of history confounds, and the size of the sample, but it s never a bad idea to avoid it. 13

14 Block Random Assignment In block RA, the set of all conditions is shuffled several times, and a series of shuffled sets of conditions is created Example: Experiment with three conditions might produce a sequence like Counter-example: With simple RA, same experiment might produce a sequence like Note that, when using block RA, number of participants should ideally be an even multiple of the number of conditions 14

15 Example of Block RA E.g., Four conditions with n=10 each. In simple RA: Shuffle 10, 10, 10, 10 But might (just by chance) end up drawing most of the s before any s are drawn (for example). Block RA: Instead create 10 block decks of four cards each: 1, 1, 1, 1 in each deck. Shuffle each block deck, then stack all the block decks on top of one-another. 15

16 Block Random Assignment With simple randomization, you might end up with a sequence like this: Start of Study Middle of Study End of Study But with block randomization, you end up with a sequence like so: Start of Study Middle of Study End of Study 16

17 Random Assignment & Number of Participants RA works well with large N. What is large? Ideally 30, but as little as 10 is acceptable for small studies. But, chance of non-equivalent groups rises as N drops. What to do if you re stuck with small N? 17

18 Matching Instead of random assignment, test participants on matching variable(s) Then assign P s to groups such that groups have equal means (or frequency distributions if MVs are nominal) on the matching variable(s) Must have theoretical reason to expect an effect of matching variable Matching variable must be testable practically and without introducing testing effects. 18

19 Matching Easiest to do with variabless that can be assessed without lengthy testing Examples: Age, Gender, Weight... How many factors to match on? Can get complicated. May result in having to turn participants away if no match can be made May be simpler to test more subjects and let random assignment do its magic. 19

20 Step 1: Order Values GPA Step 2: Create pairs of adjacent values Step 3: From each pair, randomly assign one to each group Group 1 Group µ = 7.42 µ =

21 Discussion / Questions 21

22 A Between-Subjects Instructions: Experiment In a moment I m going to show you a video. It shows 6 people playing basketball. I want you to watch the video and keep a silent mental count of the number of passes between players. But to make it a little more difficult, I want you to keep two separate counts, one for the number of passes through the air, and another for number of bounce-passes, that is, the number of times they bounce the ball to one another. If you re on the right side of the class (your right, my left), do this for the white-shirted players only. If you re on the left side of the class (your left, my right), do this for the black-shirted players only. When we re done, I ll ask you to write down the two numbers (number of bounce passes and number of air passes) and give the data to me. Remember, just keep a silent count, don t make any noise or marks with your pen or anything like that. 22

23 23

24 What to Take Away From This? Perception: You don t actually see what s out there, just a reconstruction Cognition: There are limits to human attentional load Phil. of Science: It pays to observe the same thing several times, sometimes looking at details (=experiment), sometimes looking at the big picture (= naturalistic observation) RM&E: Some things can t be repeated within-subjects 24

25 Within-Subjects Experimental Designs Population Sampling Sample 1/2 1/2 Condition 1 Condition 2 Sample Sample 25

26 Within-Subjects Designs a.k.a. Repeated measures designs Same group goes through all levels of the IV. Often used when time to do one condition is small, or when available population is small. Fewer participants needed, no group effects, but may be impractical for some tasks. 26

27 Within-subjects Designs Allows more statistical power More participants per condition for a given grand N Don t have to deal with between-groups variance (even with RA, there s always some difference between groups that can obscure experimental effects) BUT, must be careful of sequence effects 27

28 Sequence Effects Going through level A of the IV may affect performance on level B. Progressive Sequence Effects: Practice effect: Participant gains knowledge, warms up, focuses, etc. Fatigue effect: Participant gets tired, bored, overwhelmed, etc. 28

29 Sequence Effects Carry-over effects: Non-symmetrical sequence effects. Doing Level A then Level B not the same as doing Level B then Level A. Common when levels vary in difficulty: simple then hard is easier than hard then simple. In this case, best to switch to between-subjects design. 29

30 Counterbalancing Group of techniques for minimizing progressive sequence effects in within-subjects experiments Complete counterbalancing Partial counterbalancing Sequence randomization Sequence randomization with constraints Latin square General idea is to equalize the number of participants who do each level in each order 30

31 Complete Counterbalancing Equal number of participants goes through each possible order of conditions Example: With two condition, half of Ps do 1-then-2, other half do 2-then-1 The ultimate form of counterbalancing, but not always practical. Number of orders of levels is n factorial or n!, where n is number of levels. 31

32 Factorial N! = N N-1 N # of Levels # of Orders

33 Factorial Why is it N!? Consider a case where you have 4 chairs and need to seat 4 people. How many people can you choose from to go in the st chair? 4...2nd chair? 3 (because one is in the 1st)...3rd chair? 2 (other 2 already seated)...4th chair? 1 33

34 Discussion / Questions 34

35 Partial Counterbalancing Sequence randomization: Necessary when large number of levels, but adds noise. Sequence randomization with constraints: Fellows Numbers: Ensure that correct answer is not the same more than X times in a row Same stimulus does not appear on sequential trials 35

36 Latin Square From an ancient roman game: Given an X by X grid, and X different symbols, can you place the symbols in the grid so that each appears only once per row and once per column? Similar to Sudoku puzzles. Even harder: Can you make it so that each symbol appears directly to the right of each other symbol once and only once? (only possible when X is even). This is called a balanced latin square 36

37 Latin Square A completed Balanced Latin Square can be used as a form of partial counter-balancing Each participant runs through the conditions in the order indicated by one row of the BLS Number of participants must be evenly divisible by number of levels 37

38 6x6 Balanced Latin Square Sequential Position Order # A B F C E D 2 B C A D F E 3 C D B E A F 4 D E C F B A 5 E F D A C B 6 F A E B D C 38

39 Latin Square Design If you run one participant through each of the 6 orders, then: Each of the 6 levels will have been done once in each of the 6 possible sequential positions. Each of the 6 levels will have been immediately preceded by each of the other 5 levels once and only once. If you run 60 people, then 10 will have gone through each order 39

40 Latin Square Design For example, if you test 60 people (6 x 10), then: 10 will have done A first, 10 B first, 10 C first will have done A second, 10 B second, will have done level A immediately preceded by B, 10 will have done A immediately preceded by C, etc... 40

41 Creating a Balanced Latin Square (if X is even) Build the first row according to the pattern: A B (x) C (x-1) D (x-2) E (x-3) etc... where x is the highest letter you re using (e.g., F if doing a 6 6). With 6 levels, row 1 is: A B F C E D Build the remaining rows by incrementing the letters by 1 (i.e., A becomes B, B becomes C...). Row 2 is B C A D F E Note that we wrap back to A when incrementing F 41

42 Latin Square With Odd Number of Levels Previous system only works with even # of levels. A 5 5 or 7 7 latin square cannot be balanced. With uneven # of levels, create latin square plus a leftright mirror of it. Run an equal number of participants through each of the orders in these two latin squares Order Sequential Position A B E C D 2 B C A D E 3 C D B E A 4 D E C A B 5 E A D B C D C E B A 7 E D A C B 8 A E B D C 9 B A C E D 10 C B D A E 42

43 Summary: Counterbalancing 2-3 levels: Complete counterbalancing 4-8 levels: Latin square 4+ levels: Sequence randomization, possibly with constraints 43

44 Counterbalancing w/ Multiple Exposures What if subjects experience each condition more than once? Reverse counterbalancing: ABCD-DCBA-ABCD-DCBA... Block randomization: BADC-CBAD-DCAB-ADCB... Block randomization with constraints 44

45 Within vs. Between in Developmental Psych Cross-sectional study Between groups: Test 5, 7, 9 years olds Faster than following from 5-9 Problem: Cohort effects. Longitudinal study Within groups: Follow 5 year olds until 9 years old. Takes a long time! Problem: Attrition Other methods combine the two 45

46 Summary: Confounds & Controls Participant differences: random assignment, block randomization, matching Order effects: Full & partial counterbalancing Participant bias: Blind procedures. Removal of demand characteristics Experimenter bias: Automation, double-blind procedures Floor & ceiling effects: Use procedures that are neither too difficult nor too easy. 46

47 Think Twice... Carpenter s adage: Measure twice, cut once Scientist s adage: Think twice, measure once Do not rush experimental design, there are many pitfalls to be avoided and careful design will save time in the long run. 47

48 Discussion / Questions What is the difficulty with reverse counterbalancing? What method of counterbalancing would you use for an experiment with 5 levels? 48

(a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?

(a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events? Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent

More information

Roll & Make. Represent It a Different Way. Show Your Number as a Number Bond. Show Your Number on a Number Line. Show Your Number as a Strip Diagram

Roll & Make. Represent It a Different Way. Show Your Number as a Number Bond. Show Your Number on a Number Line. Show Your Number as a Strip Diagram Roll & Make My In Picture Form In Word Form In Expanded Form With Money Represent It a Different Way Make a Comparison Statement with a Greater than Your Make a Comparison Statement with a Less than Your

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 Introduction to Discrete Probability In the last note we considered the probabilistic experiment where we flipped a

More information

2. Combinatorics: the systematic study of counting. The Basic Principle of Counting (BPC)

2. Combinatorics: the systematic study of counting. The Basic Principle of Counting (BPC) 2. Combinatorics: the systematic study of counting The Basic Principle of Counting (BPC) Suppose r experiments will be performed. The 1st has n 1 possible outcomes, for each of these outcomes there are

More information

Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

More information

Kenken For Teachers. Tom Davis January 8, Abstract

Kenken For Teachers. Tom Davis   January 8, Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles January 8, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic

More information

Techniques for Generating Sudoku Instances

Techniques for Generating Sudoku Instances Chapter Techniques for Generating Sudoku Instances Overview Sudoku puzzles become worldwide popular among many players in different intellectual levels. In this chapter, we are going to discuss different

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM.

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. 6.04/6.43 Spring 09 Quiz Wednesday, March, 7:30-9:30 PM. Name: Recitation Instructor: TA: Question Part Score Out of 0 3 all 40 2 a 5 b 5 c 6 d 6 3 a 5 b 6 c 6 d 6 e 6 f 6 g 0 6.04 Total 00 6.43 Total

More information

Simulations. 1 The Concept

Simulations. 1 The Concept Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that can be

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

1. For which of the following sets does the mean equal the median?

1. For which of the following sets does the mean equal the median? 1. For which of the following sets does the mean equal the median? I. {1, 2, 3, 4, 5} II. {3, 9, 6, 15, 12} III. {13, 7, 1, 11, 9, 19} A. I only B. I and II C. I and III D. I, II, and III E. None of the

More information

From Probability to the Gambler s Fallacy

From Probability to the Gambler s Fallacy Instructional Outline for Mathematics 9 From Probability to the Gambler s Fallacy Introduction to the theme It is remarkable that a science which began with the consideration of games of chance should

More information

Part 1: I can express probability as a fraction, decimal, and percent

Part 1: I can express probability as a fraction, decimal, and percent Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

More information

CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, Homework 5 CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

More information

1. How to identify the sample space of a probability experiment and how to identify simple events

1. How to identify the sample space of a probability experiment and how to identify simple events Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

More information

COMPOUND EVENTS. Judo Math Inc.

COMPOUND EVENTS. Judo Math Inc. COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting The Final Challenge Part One You have 30 minutes to solve as many of these problems as you can. You will likely not have time to answer all the questions, so pick

More information

Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.

Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one

More information

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11 Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

More information

Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers? Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

More information

Probability Interactives from Spire Maths A Spire Maths Activity

Probability Interactives from Spire Maths A Spire Maths Activity Probability Interactives from Spire Maths A Spire Maths Activity https://spiremaths.co.uk/ia/ There are 12 sets of Probability Interactives: each contains a main and plenary flash file. Titles are shown

More information

Section : Combinations and Permutations

Section : Combinations and Permutations Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

More information

Discrete probability and the laws of chance

Discrete probability and the laws of chance Chapter 8 Discrete probability and the laws of chance 8.1 Multiple Events and Combined Probabilities 1 Determine the probability of each of the following events assuming that the die has equal probability

More information

out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white?

out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white? Example: Leah places four white marbles and two black marbles in a bag She plans to draw out one marble and then a second marble without replacing the first What is the probability that both marbles will

More information

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

More information

Probability. Misha Lavrov. ARML Practice 5/5/2013

Probability. Misha Lavrov. ARML Practice 5/5/2013 Probability Misha Lavrov ARML Practice 5/5/2013 Warmup Problem (Uncertain source) An n n n cube is painted black and then cut into 1 1 1 cubes, one of which is then selected and rolled. What is the probability

More information

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

More information

PLAYERS AGES MINS.

PLAYERS AGES MINS. 2-4 8+ 20-30 PLAYERS AGES MINS. COMPONENTS: (123 cards in total) 50 Victory Cards--Every combination of 5 colors and 5 shapes, repeated twice (Rainbow Backs) 20 Border Cards (Silver/Grey Backs) 2 48 Hand

More information

A. 15 B. 24 C. 45 D. 54

A. 15 B. 24 C. 45 D. 54 A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

More information

Laboratory 1: Uncertainty Analysis

Laboratory 1: Uncertainty Analysis University of Alabama Department of Physics and Astronomy PH101 / LeClair May 26, 2014 Laboratory 1: Uncertainty Analysis Hypothesis: A statistical analysis including both mean and standard deviation can

More information

Exam III Review Problems

Exam III Review Problems c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

More information

3.6 Theoretical and Experimental Coin Tosses

3.6 Theoretical and Experimental Coin Tosses wwwck12org Chapter 3 Introduction to Discrete Random Variables 36 Theoretical and Experimental Coin Tosses Here you ll simulate coin tosses using technology to calculate experimental probability Then you

More information

Lesson Sampling Distribution of Differences of Two Proportions

Lesson Sampling Distribution of Differences of Two Proportions STATWAY STUDENT HANDOUT STUDENT NAME DATE INTRODUCTION The GPS software company, TeleNav, recently commissioned a study on proportions of people who text while they drive. The study suggests that there

More information

not human choice is used to select the sample.

not human choice is used to select the sample. [notes for days 2 and 3] Random Sampling All statistical sampling designs have in common the idea that chance not human choice is used to select the sample. Randomize let chance do the choosing! Randomization

More information

LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

More information

Please Turn Over Page 1 of 7

Please Turn Over Page 1 of 7 . Page 1 of 7 ANSWER ALL QUESTIONS Question 1: (25 Marks) A random sample of 35 homeowners was taken from the village Penville and their ages were recorded. 25 31 40 50 62 70 99 75 65 50 41 31 25 26 31

More information

Raise your hand if you rode a bus within the past month. Record the number of raised hands.

Raise your hand if you rode a bus within the past month. Record the number of raised hands. 166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

More information

PUBLIC EXPENDITURE TRACKING SURVEYS. Sampling. Dr Khangelani Zuma, PhD

PUBLIC EXPENDITURE TRACKING SURVEYS. Sampling. Dr Khangelani Zuma, PhD PUBLIC EXPENDITURE TRACKING SURVEYS Sampling Dr Khangelani Zuma, PhD Human Sciences Research Council Pretoria, South Africa http://www.hsrc.ac.za kzuma@hsrc.ac.za 22 May - 26 May 2006 Chapter 1 Surveys

More information

Grades 7 & 8, Math Circles 27/28 February, 1 March, Mathematical Magic

Grades 7 & 8, Math Circles 27/28 February, 1 March, Mathematical Magic Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Card Tricks Grades 7 & 8, Math Circles 27/28 February, 1 March, 2018 Mathematical Magic Have you ever

More information

The Human Fruit Machine

The Human Fruit Machine The Human Fruit Machine For Fetes or Just Fun! This game of chance is good on so many levels. It helps children with maths, such as probability, statistics & addition. As well as how to raise money at

More information

Section The Multiplication Principle and Permutations

Section The Multiplication Principle and Permutations Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

More information

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1 Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

More information

Probability of Independent and Dependent Events

Probability of Independent and Dependent Events 706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

More information

Dependence. Math Circle. October 15, 2016

Dependence. Math Circle. October 15, 2016 Dependence Math Circle October 15, 2016 1 Warm up games 1. Flip a coin and take it if the side of coin facing the table is a head. Otherwise, you will need to pay one. Will you play the game? Why? 2. If

More information

Lesson 4: Chapter 4 Sections 1-2

Lesson 4: Chapter 4 Sections 1-2 Lesson 4: Chapter 4 Sections 1-2 Caleb Moxley BSC Mathematics 14 September 15 4.1 Randomness What s randomness? 4.1 Randomness What s randomness? Definition (random) A phenomenon is random if individual

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting The Final Challenge Part One Solutions Whenever the question asks for a probability, enter your answer as either 0, 1, or the sum of the numerator and denominator

More information

Battle. Table of Contents. James W. Gray Introduction

Battle. Table of Contents. James W. Gray Introduction Battle James W. Gray 2013 Table of Contents Introduction...1 Basic Rules...2 Starting a game...2 Win condition...2 Game zones...2 Taking turns...2 Turn order...3 Card types...3 Soldiers...3 Combat skill...3

More information

Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

More information

Sample Surveys. Chapter 11

Sample Surveys. Chapter 11 Sample Surveys Chapter 11 Objectives Population Sample Sample survey Bias Randomization Sample size Census Parameter Statistic Simple random sample Sampling frame Stratified random sample Cluster sample

More information

Section A Calculating Probabilities & Listing Outcomes Grade F D

Section A Calculating Probabilities & Listing Outcomes Grade F D Name: Teacher Assessment Section A Calculating Probabilities & Listing Outcomes Grade F D 1. A fair ordinary six-sided dice is thrown once. The boxes show some of the possible outcomes. Draw a line from

More information

CSC/MATA67 Tutorial, Week 12

CSC/MATA67 Tutorial, Week 12 CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly

More information

Name Class Date. Introducing Probability Distributions

Name Class Date. Introducing Probability Distributions Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

More information

Building Successful Problem Solvers

Building Successful Problem Solvers Building Successful Problem Solvers Genna Stotts Region 16 ESC How do math games support problem solving for children? 1. 2. 3. 4. Diffy Boxes (Draw a large rectangle below) 1 PIG (Addition & Probability)

More information

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E. Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

More information

Bouncy Dice Explosion

Bouncy Dice Explosion The Big Idea Bouncy Dice Explosion This week you re going to toss bouncy rubber dice to see what numbers you roll. You ll also play War to see who s the high roller. Finally, you ll move onto a giant human

More information

Chapter 12 Summary Sample Surveys

Chapter 12 Summary Sample Surveys Chapter 12 Summary Sample Surveys What have we learned? A representative sample can offer us important insights about populations. o It s the size of the same, not its fraction of the larger population,

More information

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes. Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation

More information

isudoku Computing Solutions to Sudoku Puzzles w/ 3 Algorithms by: Gavin Hillebrand Jamie Sparrow Jonathon Makepeace Matthew Harris

isudoku Computing Solutions to Sudoku Puzzles w/ 3 Algorithms by: Gavin Hillebrand Jamie Sparrow Jonathon Makepeace Matthew Harris isudoku Computing Solutions to Sudoku Puzzles w/ 3 Algorithms by: Gavin Hillebrand Jamie Sparrow Jonathon Makepeace Matthew Harris What is Sudoku? A logic-based puzzle game Heavily based in combinatorics

More information

Finite Mathematics MAT 141: Chapter 8 Notes

Finite Mathematics MAT 141: Chapter 8 Notes Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication

More information

Here are two situations involving chance:

Here are two situations involving chance: Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

More information

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally

More information

Introduction to Counting and Probability

Introduction to Counting and Probability Randolph High School Math League 2013-2014 Page 1 If chance will have me king, why, chance may crown me. Shakespeare, Macbeth, Act I, Scene 3 1 Introduction Introduction to Counting and Probability Counting

More information

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

More information

EECS 203 Spring 2016 Lecture 15 Page 1 of 6

EECS 203 Spring 2016 Lecture 15 Page 1 of 6 EECS 203 Spring 2016 Lecture 15 Page 1 of 6 Counting We ve been working on counting for the last two lectures. We re going to continue on counting and probability for about 1.5 more lectures (including

More information

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,

More information

Tanning: Week 13 C. D.

Tanning: Week 13 C. D. Tanning: Week 13 Name: 1. Richard is conducting an experiment. Every time he flips a fair two-sided coin, he also rolls a six-sided die. What is the probability that the coin will land on tails and the

More information

CISC 1400 Discrete Structures

CISC 1400 Discrete Structures CISC 1400 Discrete Structures Chapter 6 Counting CISC1400 Yanjun Li 1 1 New York Lottery New York Mega-million Jackpot Pick 5 numbers from 1 56, plus a mega ball number from 1 46, you could win biggest

More information

What Do You Expect? Concepts

What Do You Expect? Concepts Important Concepts What Do You Expect? Concepts Examples Probability A number from 0 to 1 that describes the likelihood that an event will occur. Theoretical Probability A probability obtained by analyzing

More information

Geometric Distribution

Geometric Distribution Geometric Distribution Review Binomial Distribution Properties The experiment consists of n repeated trials. Each trial can result in just two possible outcomes. The probability of success is the same

More information

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000.

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000. CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 15 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette wheels. Today

More information

1. Theoretical probability is what should happen (based on math), while probability is what actually happens.

1. Theoretical probability is what should happen (based on math), while probability is what actually happens. Name: Date: / / QUIZ DAY! Fill-in-the-Blanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental

More information

SET-UP QUALIFYING. x7 x4 x2. x1 x3

SET-UP QUALIFYING. x7 x4 x2. x1 x3 +D +D from lane + from mph lane from + mph lane + from mph lane + mph This demonstration race will walk you through set-up and the first four turns of a one- race to teach you the basics of the game. ;

More information

Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain

Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0

More information

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39 CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

More information

Conditional Probability Worksheet

Conditional Probability Worksheet Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

More information

Eleventh Annual Ohio Wesleyan University Programming Contest April 1, 2017 Rules: 1. There are six questions to be completed in four hours. 2.

Eleventh Annual Ohio Wesleyan University Programming Contest April 1, 2017 Rules: 1. There are six questions to be completed in four hours. 2. Eleventh Annual Ohio Wesleyan University Programming Contest April 1, 217 Rules: 1. There are six questions to be completed in four hours. 2. All questions require you to read the test data from standard

More information

Bouncy Dice Explosion

Bouncy Dice Explosion Bouncy Dice Explosion The Big Idea This week you re going to toss bouncy rubber dice to see what numbers you roll. You ll also play War to see who s the high roller. Finally, you ll move onto a giant human

More information

Grade 6 Math Circles March 7/8, Magic and Latin Squares

Grade 6 Math Circles March 7/8, Magic and Latin Squares Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles March 7/8, 2017 Magic and Latin Squares Today we will be solving math and logic puzzles!

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information

Probability. Dr. Zhang Fordham Univ.

Probability. Dr. Zhang Fordham Univ. Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

More information

1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere.

1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere. Lebanese American University Spring 2006 Byblos Date: 3/03/2006 Duration: h 20. Let X be a continuous random variable such that its density function is 8 < k(x 2 +), 0

More information

Basic Probability Concepts

Basic Probability Concepts 6.1 Basic Probability Concepts How likely is rain tomorrow? What are the chances that you will pass your driving test on the first attempt? What are the odds that the flight will be on time when you go

More information

Probability and the Monty Hall Problem Rong Huang January 10, 2016

Probability and the Monty Hall Problem Rong Huang January 10, 2016 Probability and the Monty Hall Problem Rong Huang January 10, 2016 Warm-up: There is a sequence of number: 1, 2, 4, 8, 16, 32, 64, How does this sequence work? How do you get the next number from the previous

More information

Date. Probability. Chapter

Date. Probability. Chapter Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

More information

Sampling, Part 2. AP Statistics Chapter 12

Sampling, Part 2. AP Statistics Chapter 12 Sampling, Part 2 AP Statistics Chapter 12 bias error Sampling error is just sampling variation! Bias vs Error BIAS is something that causes your measurements to systematically miss in the same direction,

More information

This chapter gives you everything you

This chapter gives you everything you Chapter 1 One, Two, Let s Sudoku In This Chapter Tackling the basic sudoku rules Solving squares Figuring out your options This chapter gives you everything you need to know to solve the three different

More information

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following:

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 17 Introduction to Probability The topic for the third and final major portion of the course is Probability. We will aim to make sense of

More information

Is muddled about the correspondence between multiplication and division facts, recording, for example: 3 5 = 15, so 5 15 = 3

Is muddled about the correspondence between multiplication and division facts, recording, for example: 3 5 = 15, so 5 15 = 3 Is muddled about the correspondence between multiplication and division facts, recording, for example: 3 5 = 15, so 5 15 = 3 Opportunity for: recognising relationships Resources Board with space for four

More information

elements in S. It can tricky counting up the numbers of

elements in S. It can tricky counting up the numbers of STAT-UB.003 Notes for Wednesday, 0.FEB.0. For many problems, we need to do a little counting. We try to construct a sample space S for which the elements are equally likely. Then for any event E, we will

More information

Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work.

Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work. Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20 Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. 1 Review U4H1 2 Theoretical Probability 3 Experimental Probability

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

Lesson 15.5: Independent and Dependent Events

Lesson 15.5: Independent and Dependent Events Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

Midterm 2 Practice Problems

Midterm 2 Practice Problems Midterm 2 Practice Problems May 13, 2012 Note that these questions are not intended to form a practice exam. They don t necessarily cover all of the material, or weight the material as I would. They are

More information

Math 7 Notes - Unit 11 Probability

Math 7 Notes - Unit 11 Probability Math 7 Notes - Unit 11 Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare theoretical

More information

Page 1 of 22. Website: Mobile:

Page 1 of 22. Website:    Mobile: Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

More information

the gamedesigninitiative at cornell university Lecture 6 Uncertainty & Risk

the gamedesigninitiative at cornell university Lecture 6 Uncertainty & Risk Lecture 6 Uncertainty and Risk Risk: outcome of action is uncertain Perhaps action has random results May depend upon opponent s actions Need to know what opponent will do Two primary means of risk in

More information