W = {Carrie (U)nderwood, Kelly (C)larkson, Chris (D)aughtry, Fantasia (B)arrino, and Clay (A)iken}


 Jeffry Martin
 2 years ago
 Views:
Transcription
1 UNIT V STUDY GUIDE Counting Course Learning Outcomes for Unit V Upon completion of this unit, students should be able to: 1. Apply mathematical principles used in realworld situations. 1.1 Draw tree diagrams to represent counting situations graphically. 1.2 Apply counting techniques to solve applied problems. 1.3 Apply the theory of permutations and combinations to solve counting problems. 5. Demonstrate counting techniques. 5.1 Count elements in a set systematically. 5.2 Apply the fundamental counting principle. 5.3 Demonstrate how to solve counting problems with special conditions. 5.4 Calculate the number of permutations and combinations of n objects taken r at a time. 5.5 Use factorial notation to represent the number of permutations of a set of objects. 5.6 Create slot diagrams to organize information in counting problems. Reading Assignment Chapter 12: Counting: Just How Many Are There? Section 12.1: Introduction to Counting Methods, pp Section 12.2: The Fundamental Counting Principle, pp Section 12.3: Permutations and Combinations, pp Unit Lesson Numbers and counting are some of the first mathematical principles that were introduced to you at a young age. People first learn how to count to ten, then to a hundred, and eventually by even and odd numbers. This unit introduces more principles about counting. In particular, some mathematical properties and formulas that will help in counting larger sets will be learned Systematic Counting: Systematic counting is the act of counting objects in an organized way. For example, if you wanted to list the all the ways that a die could be rolled, you would write 1, 2, 3, 4, 5, 6 because a die has six sides each consisting of a number 1 through 6. Listing these methods in numeric order is a systematic way of finding the answer. The systematic approach will be used to solve the following example. You are selecting from the set of W = {Carrie (U)nderwood, Kelly (C)larkson, Chris (D)aughtry, Fantasia (B)arrino, and Clay (A)iken} This set consists of American Idol contestants who have had successful careers. List all the ways that you can select two singers without repetition; order is not important. For example, BB is not allowed and UC is the same as CU. MAT 1301, Liberal Arts Math 1
2 A set is a list of items in a list. Set W in the example consists of 5 singers and each singer is denoted by a letter: U, C, D, B, and A. Sets are usually named with a capital letter such as a W. Sets are also usually written with brackets, { }, around the list of items. W = {U, C, D, B, and A} A systematic list will be written to show all the ways in which two singers can be selected. First, pair the first singer (U) with the other singers. This results in the following: UC, UD, UB, UA Next, pair the second singer (C) with the other singers. The problem states that repetition is not allowed in our list. Therefore, CU will not be included in the list below because UC was previously identified. CD, CB, CA Next, pair the third singer (D) with the other singers. This will give result in the following: DB, DA Now we will pair the fourth singer (B) with the other singers. This will result in the following: BA We cannot pair the last singer (A) with other singers without repeating what was already listed. Thus, the list is complete! There are 10 ways to select two singers from set W. Dice are often used when learning about different counting strategies. The next example uses a systematic counting approach to list the different ways that an event can occur when rolling two dice. Assume that you are rolling two dice: the first one is red and the second is green. Use a systematic listing to determine the number of ways a total of 5 can be rolled. Hint: A total can be rolled two ways: (1, 2) and (2, 1). A dice has six sides and each side is numbered with either a 1, 2, 3, 4, 5, or 6. To differentiate the two dice, we will assume that one is red and the other green. Dice One: R(red) = {1,2,3,4,5,6} Dice Two: G(green) = {1,2,3,4,5,6} We will use ordered pairs in the form (red, green) to list the number of ways that we can roll a total of 5. First, choose the first number in set R. This number is 1. 1 can only be paired with 4 to make a total of 5. (1,4) MAT 1301, Liberal Arts Math 2
3 Next, choose the second number in set R. This number is 2. The number 2 can UNIT only x be STUDY paired GUIDE with a 3 to make a total of 5. (2,3) Next, choose the third number in set R. This number is 3. The numbers 3 can only be paired with 2 to make a total of 5. (3,2) Next, choose the third number in set R. This number is 4. The number 4 can only be paired with 1 to make a total of 5. (4,1) Next, choose the fourth number in set R. This number is 5. The number 5 cannot be paired with any number in set G to make a total of 5. The systematic approach ensured that all ordered pairs were identified. Thus, the list is complete. There are 4 ways to list a total of 5 when two dice are rolled. Tree Diagrams A tree diagram illustrates the different ways in which an event can occur and is a graphical approach to counting. Draw a tree diagram that illustrates the different ways to flip a penny, nickel, dime, and quarter. Use this diagram to solve Exercises 58 on page 612. In how many ways can exactly two tails be obtained? To draw the tree, start by writing out the potential outcomes from flipping a penny: heads or tails. Next, branch from those options and list the possible outcomes for flipping a nickel. This process for flipping a dime is continued following by a quarter. Then list the combined sequence of heads and tails for each path of the tree and highlight those that satisfy the condition of getting exactly two tails. The final answer is 6 ways. MAT 1301, Liberal Arts Math 3
4 If a tree diagram was drawn showing how many ways five coins could be flipped, how many branches would it have? The tree begins at a single point, and then two branches will lead to the results of the first flip. Each of those branches will split into two branches on the second flip for a total of four branches. The third flip will branch from each of those four branches for a total of eight branches. The next flip, flip four, will double the number to sixteen branches. The final flip will double this number one last time for a total of thirtytwo ways for five coins being flipped. Assume that a tripledeck ice cream cone with vanilla, strawberry, and chocolate as possible flavors is purchased. The flavors can be repeated or not. Two cones will be considered different if the flavors are the same but occur in different order. How many different flavors are possible? Since repetition is allowed, each time a choice of flavor is made, there will be three options. Since the order of the flavors do not matter, the multiplication principle is used to solve. There are 27 different flavor possibilities. Flavor possibilities = Flavor possibilities = The Fundamental Counting Principle: A new car is being purchased, and the individual purchasing the car needs to decide on the features he/she wants to include in the car. The car cannot be built without first deciding on a model, a color, and an audio system. Therefore, the overall task cannot be completed without finishing a series of tasks. The number of ways to build the car could be identified by drawing a tree diagram; however, the fundamental counting principle allows one to identify the number of ways a series of tasks can be completed by a using a simple formula. The Fundamental Counting Principle (FCP) If you wants to perform a series of tasks, and the first task can be done in a ways, the second can be done in b ways, the third can be done in c ways, and so on, then all tasks can be done in a b c ways. Assume that you can select among 3 models, 5 colors, and 2 audio systems when building a car. By using the FCP formula, you know that there are = 30 ways to build your new car. The Equestrian Club has eight members. If the club wants to select a president, vice president, and treasurer (all of whom must be different), in how many ways can this be done? By applying the fundamental counting principle, we can see that there are eight ways that the first position can be filled (one of the eight members). Once that position is filled, there are seven ways that the second position can be filled (one of the seven remaining members). Moving on to the third position, there are only six MAT 1301, Liberal Arts Math 4
5 ways that it can be filled (one of the six remaining members). Therefore, those UNIT possibilities x STUDY can GUIDE be multiplied to obtain the result: = 336 different ways The early bird special at TGI Friday s features an appetizer, soup or salad, entrée, and dessert. If there are 5 appetizers, 6 choices for soup or salad, 13 entrées, and 4 desserts, how many different meals are possible? (It is assumed that one makes a selection from each category.) To solve this problem, the number of ways that each food category may be selected needs to be determined. There are 5 appetizers, 6 choices for soup or salad, 13 entrées, and 4 desserts. Therefore, the fundamental counting principle can be used, and all choices can be multiplied together to find the result. There are 1,560 different ways to choose a meal = 1, Permutations and Combinations: Permutations and combinations are mathematical terms that are used when solving detailed counting problems. Factorial Notation A factorial is a mathematical operation used when computing permutations and combinations. It is denoted by an exclamation mark (!). For example, n! means that the factorial operation will be applied to n and is read n factorial. Definition If n is a counting number, the symbol n! stands for the product n (n1) (n2) (n3) 2 1. One defines 0! = 1. Solve: 9! The definition of a factorial will be used to solve. n! = n (n1) (n2) (n3) 2 1 = 9 (91) (92) (93) 2 1 = Note: Keep subtracting until 1 is obtained as the last digit in the sequence. = 563,760 Solve: 7! MAT 1301, Liberal Arts Math 5
6 7! Cancel like factors on the top and bottom of the fraction. = Multiply. = 720 Solve: 7! 3! 7! 3! ( )(3 2 1) ( )(3 2 1) = Cancel like factors on the top and bottom of the fraction. Multiply. = Divide. = 120 Permutations A permutation is the act of rearranging a set of numbers or items in an order or sequence without repetition. For example, suppose you have the following set of letters: S = {a, b, c} This set has 6 permutations because the letters can be arranged 6 different ways without repetition. These ways are illustrated below: abc, acb, bac, bca, cba, cab MAT 1301, Liberal Arts Math 6
7 The mathematical notation used to express permutations is denoted by P(n, r). UNIT This x is STUDY read as GUIDE the number of permutations of n objects taken r at a time. The figure below illustrates this and may be found on page 623 of the textbook. There were 3 letters selected from set S in the example above. All 3 letters were chosen to make our permutations. Therefore, it was found that P(n, r) = P(3, 3) = 6. The knowledge of factorials can be used to compute permutations using a formula. Formula for computing P(n, r): Find the permutation. Eight objects taken three at a time. P(n, r) = n! (n r)! First, identify n and r. There are eight objects, so n = 8. Three objects are taken at a time, so r = 3. Next, solve P(n, r) = P(8,3). P(8,3) = 8! (8 3)! = 8! 5! Plug in the values for n and r in the permutation formula. Subtract the values in the parentheses. = = Cancel like factors on the top and bottom of the fraction. = Multiply. = 336 MAT 1301, Liberal Arts Math 7
8 Solve. P(10,3) P(10,3) = (10 3)! = 7! Plug in the values for n and r in the permutation formula. Subtract the values in the parentheses. Cancel like factors on the top and bottom of the fraction = Multiply. = 720 Identifying Permutations in Word Problems The following permutation problems will help to identify when permutations should be calculated. Remember that a permutation will be calculated when order matters, and items in a list cannot be repeated. On a biology quiz, a student must match eight terms with their definitions. Assume that the same term cannot be used twice. Write the formula that will be used. Solving the problem is not required. The key to this problem is to know that the order of matching the terms with their definitions matters, thus this is a permutation. Therefore, it is denoted as P(8,8). A password for a computer consists of three different letters of the alphabet followed by four different digits from 0 to 9. How many different passwords are possible? In this situation the order matters, so this is a permutation. Three letters will be chosen from a possible 26, and 4 digits from a possible 10. The two results will then be multiplied by each other for the final result. P(26,3) = P(10,4) = 26! (26 3)! = 26! ! = = = 15,600 23! 23! (10 4)! = ! = = = ! 6! Therefore, multiplying both results together results in the total number of passwords possible: 15, = 78, 624, 000 possible passwords. MAT 1301, Liberal Arts Math 8
9 Combinations Combinations can be described as selecting items from a group when the order of the selection does not matter. In other words, group (abc) would by the same as (bca), because the order does not matter. The mathematical notation used to express combinations is denoted by C(n, r). This is expressed as follows: We are forming a combination of n objects taken r at a time. Formula for computing C(n, r): C(n, r) = P(n, r) r! = n! r! (n r)! Find the number of combinations. Eight objects taken three at a time. C(8,3) = 8! 3!(8 3)! = 8! 3!5! = (3 2 1)( ) = (3 2 1)( ) = = Plug in the values for n and r in the combination formula. Subtract the values in the parentheses. Cancel like factors on the top and bottom of the fraction. Multiply. Divide. = 56 combinations Solve. C(6,2) C(6,2) = 6! 2!(6 2)! = 6! 2!4! = (2 1)( ) Plug in the values for n and r in the combination formula. Subtract the values in the parentheses. MAT 1301, Liberal Arts Math 9
10 = (2 1)( ) = Cancel like factors on the top and bottom of the UNIT fraction. x STUDY GUIDE Multiply. = 30 2 Divide. = 15 Identifying Combinations in Word Problems The following combination problems will help you identify when combinations should be calculated. Remember that a combination will be calculated when the order of the items does not matter. A committee is to be formed consisting of 5 men and 4 women. If the membership is to be chosen from 12 men and 10 women, how many different committees are possible? This is a combination problem so the formula below will be used: C(n, r) = Where n is the number of elements taken r at a time. n! r! (n r)! Step 1: Find the number of ways to choose the men. Out of the 12 possible men, 5 of them should be chosen. C(12,5) = 12! = = (12 5)! 5! ( )( ) = = 792 ways 120 Step 2: Find the number of ways to choose the women. Out of the 10 possible women, 4 of them should be chosen. C(10,4) = (10 4)! 4! = ( )( ) = = 5040 = 210 ways 24 Step 3: Multiply the number of ways to choose 5 men and 4 women. C(12,5) C(10,4) = = 166,320 Thus, there are 166,320 ways to choose 5 men from 12 men and to choose 4 women from 10 women. A pet store has 6 fluffy bunnies and 9 hamsters. In how many ways can 3 animals be selected if there can be at most 1 fluffy bunny? To answer this, all the ways that one or less fluffy bunnies can be chosen need to be looked at. 1. If one chooses 0 fluffy bunnies, then 3 hamsters are chosen. 2. If one chooses 1 fluffy bunny, then 2 hamsters are chosen. MAT 1301, Liberal Arts Math 10
11 So for each one, the formula for combinations should be used: C(n, r) = n! r! (n r)! Where n is the number of elements taken r at a time fluffy bunnies are chosen out of 6 fluffy bunnies, and 3 hamsters are chosen out of 9 hamsters. C(6,0) C(9,3) = 6! (6 0)! 0! 9! (9 3)! 3! = ( )(1) ( )(3 2 1) = 1 84 = fluffy bunny is chosen out of 6 fluffy bunnies, and 2 hamsters are chosen out of 9 hamsters. C(6,1) C(9,2) = 6! (6 1)! 1! 9! (9 2)! 2! = ( )(1) ( )(2 1) = 6 36 = 216 Now, the possible combinations need to be added together = 300 ways Reference Pirnot, T. L. (2014). Mathematics all around (5th ed.). Boston, MA: Pearson. MAT 1301, Liberal Arts Math 11
Course Learning Outcomes for Unit V
UNIT V STUDY GUIDE Counting Reading Assignment See information below. Key Terms 1. Combination 2. Fundamental counting principle 3. Listing 4. Permutation 5. Tree diagrams Course Learning Outcomes for
More informationMAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology
MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally
More informationCounting Methods and Probability
CHAPTER Counting Methods and Probability Many good basketball players can make 90% of their free throws. However, the likelihood of a player making several free throws in a row will be less than 90%. You
More informationCOUNTING AND PROBABILITY
CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.2 Possibility Trees and the Multiplication Rule Copyright Cengage Learning. All rights reserved. Possibility
More informationFundamental Counting Principle
Lesson 88 Probability with Combinatorics HL2 Math  Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more
More informationObjectives: Permutations. Fundamental Counting Principle. Fundamental Counting Principle. Fundamental Counting Principle
and Objectives:! apply fundamental counting principle! compute permutations! compute combinations HL2 Math  Santowski! distinguish permutations vs combinations can be used determine the number of possible
More informationMath 1116 Probability Lecture Monday Wednesday 10:10 11:30
Math 1116 Probability Lecture Monday Wednesday 10:10 11:30 Course Web Page http://www.math.ohio state.edu/~maharry/ Chapter 15 Chances, Probabilities and Odds Objectives To describe an appropriate sample
More informationFinite Math  Fall 2016
Finite Math  Fall 206 Lecture Notes  /28/206 Section 7.4  Permutations and Combinations There are often situations in which we have to multiply many consecutive numbers together, for example, in examples
More informationProbability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College
Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical
More informationCh Counting Technique
Learning Intentions: h. 10.4 ounting Technique Use a tree diagram to represent possible paths or choices. Learn the definitions of & notations for permutations & combinations, & distinguish between them.
More informationUsing a table: regular fine micro. red. green. The number of pens possible is the number of cells in the table: 3 2.
Counting Methods: Example: A pen has tip options of regular tip, fine tip, or micro tip, and it has ink color options of red ink or green ink. How many different pens are possible? Using a table: regular
More informationNovember 6, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern
More informationPROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by
Classical Definition of Probability PROBABILITY Probability is the measure of how likely an event is. An experiment is a situation involving chance or probability that leads to results called outcomes.
More informationAlgebra II Chapter 12 Test Review
Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.
More informationProbability and Counting Techniques
Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each
More informationACTIVITY 6.7 Selecting and Rearranging Things
ACTIVITY 6.7 SELECTING AND REARRANGING THINGS 757 OBJECTIVES ACTIVITY 6.7 Selecting and Rearranging Things 1. Determine the number of permutations. 2. Determine the number of combinations. 3. Recognize
More informationRecommended problems from textbook
Recommended problems from textbook Section 91 Two dice are rolled, one white and one gray. Find the probability of each of these events. 1. The total is 10. 2. The total is at least 10. 3. The total is
More informationCHAPTER 8 Additional Probability Topics
CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information
More informationSTATISTICAL COUNTING TECHNIQUES
STATISTICAL COUNTING TECHNIQUES I. Counting Principle The counting principle states that if there are n 1 ways of performing the first experiment, n 2 ways of performing the second experiment, n 3 ways
More informationSection : Combinations and Permutations
Section 11.111.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words
More informationFinite Mathematics MAT 141: Chapter 8 Notes
Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication
More informationUnit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements
Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability
More information9.5 COUnTIng PRInCIPleS. Using the Addition Principle. learning ObjeCTIveS
800 CHAPTER 9 sequences, ProbAbility ANd counting theory learning ObjeCTIveS In this section, you will: Solve counting problems using the Addition Principle. Solve counting problems using the Multiplication
More informationMath 7 Notes  Unit 11 Probability
Math 7 Notes  Unit 11 Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare theoretical
More informationPermutations. and. Combinations
Permutations and Combinations Fundamental Counting Principle Fundamental Counting Principle states that if an event has m possible outcomes and another independent event has n possible outcomes, then there
More informationProbability WarmUp 2
Probability WarmUp 2 Directions Solve to the best of your ability. (1) Write out the sample space (all possible outcomes) for the following situation: A dice is rolled and then a color is chosen, blue
More informationExercises Exercises. 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}?
Exercises Exercises 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}? 3. How many permutations of {a, b, c, d, e, f, g} end with
More informationTeacher s Notes. Problem of the Month: Courtney s Collection
Teacher s Notes Problem of the Month: Courtney s Collection Overview: In the Problem of the Month, Courtney s Collection, students use number theory, number operations, organized lists and counting methods
More informationBlock 1  Sets and Basic Combinatorics. Main Topics in Block 1:
Block 1  Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.
More informationElementary Combinatorics
184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are
More informationFinite Math B, Chapter 8 Test Review Name
Finite Math B, Chapter 8 Test Review Name Evaluate the factorial. 1) 6! A) 720 B) 120 C) 360 D) 1440 Evaluate the permutation. 2) P( 10, 5) A) 10 B) 30,240 C) 1 D) 720 3) P( 12, 8) A) 19,958,400 B) C)
More information\\\v?i. EXERCISES Activity a. Determine the complement of event A in the rolladie experiment.
ACTIVITY 6.2 CHOICES 719 11. a. Determine the complement of event A in the rolladie experiment. b. Describe what portion of the Venn diagram above represents the complement of A. SUMMARY Activity 6.2
More informationFind the probability of an event by using the definition of probability
LESSON 101 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event
More informationPermutations and Combinations
Permutations and Combinations In statistics, there are two ways to count or group items. For both permutations and combinations, there are certain requirements that must be met: there can be no repetitions
More informationIntroduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states:
Worksheet 4.11 Counting Section 1 Introduction When looking at situations involving counting it is often not practical to count things individually. Instead techniques have been developed to help us count
More informationDiscrete Structures Lecture Permutations and Combinations
Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these
More informationStrings. A string is a list of symbols in a particular order.
Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 112 is a string of integers. X Q R A X P T is a
More informationProbability, Permutations, & Combinations LESSON 11.1
Probability, Permutations, & Combinations LESSON 11.1 Objective Define probability Use the counting principle Know the difference between combination and permutation Find probability Probability PROBABILITY:
More informationMAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions
MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
More informationUnit 5, Activity 1, The Counting Principle
Unit 5, Activity 1, The Counting Principle Directions: With a partner find the answer to the following problems. 1. A person buys 3 different shirts (Green, Blue, and Red) and two different pants (Khaki
More informationPermutations and Combinations
Motivating question Permutations and Combinations A) Rosen, Chapter 5.3 B) C) D) Permutations A permutation of a set of distinct objects is an ordered arrangement of these objects. : (1, 3, 2, 4) is a
More informationExamples: Experiment Sample space
Intro to Probability: A cynical person once said, The only two sure things are death and taxes. This philosophy no doubt arose because so much in people s lives is affected by chance. From the time a person
More informationTree Diagrams and the Fundamental Counting Principle
Objective: In this lesson, you will use permutations and combinations to compute probabilities of compound events and to solve problems. Read this knowledge article and answer the following: Tree Diagrams
More informationLenarz Math 102 Practice Exam # 3 Name: 1. A 10sided die is rolled 100 times with the following results:
Lenarz Math 102 Practice Exam # 3 Name: 1. A 10sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability
More informationSection The Multiplication Principle and Permutations
Section 2.1  The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different
More informationName: Exam 1. September 14, 2017
Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam 1 September 14, 2017 This exam is in two parts on 9 pages and contains 14 problems
More informationFoundations of Computing Discrete Mathematics Solutions to exercises for week 12
Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Agata Murawska (agmu@itu.dk) November 13, 2013 Exercise (6.1.2). A multiplechoice test contains 10 questions. There are
More informationMath Steven Noble. November 22nd. Steven Noble Math 3790
Math 3790 Steven Noble November 22nd Basic ideas of combinations and permutations Simple Addition. If there are a varieties of soup and b varieties of salad then there are a + b possible ways to order
More informationMATH STUDENT BOOK. 8th Grade Unit 10
MATH STUDENT BOOK 8th Grade Unit 10 Math 810 Probability Introduction 3 1. Outcomes 5 Tree Diagrams and the Counting Principle 5 Permutations 12 Combinations 17 Mixed Review of Outcomes 22 SELF TEST 1:
More informationCISC 1400 Discrete Structures
CISC 1400 Discrete Structures Chapter 6 Counting CISC1400 Yanjun Li 1 1 New York Lottery New York Megamillion Jackpot Pick 5 numbers from 1 56, plus a mega ball number from 1 46, you could win biggest
More informationMath 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
More informationMathematics. Programming
Mathematics for the Digital Age and Programming in Python >>> Second Edition: with Python 3 Maria Litvin Phillips Academy, Andover, Massachusetts Gary Litvin Skylight Software, Inc. Skylight Publishing
More informationProbability Concepts and Counting Rules
Probability Concepts and Counting Rules Chapter 4 McGrawHill/Irwin Dr. Ateq Ahmed AlGhamedi Department of Statistics P O Box 80203 King Abdulaziz University Jeddah 21589, Saudi Arabia ateq@kau.edu.sa
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More information6/24/14. The Poker Manipulation. The Counting Principle. MAFS.912.SIC.1: Understand and evaluate random processes underlying statistical experiments
The Poker Manipulation Unit 5 Probability 6/24/14 Algebra 1 Ins1tute 1 6/24/14 Algebra 1 Ins1tute 2 MAFS. 7.SP.3: Investigate chance processes and develop, use, and evaluate probability models MAFS. 7.SP.3:
More information5 Elementary Probability Theory
5 Elementary Probability Theory 5.1 What is Probability? The Basics We begin by defining some terms. Random Experiment: any activity with a random (unpredictable) result that can be measured. Trial: one
More informationSTATISTICS and PROBABILITY GRADE 6
Kansas City Area Teachers of Mathematics 2016 KCATM Math Competition STATISTICS and PROBABILITY GRADE 6 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may use
More informationPermutations and Combinations
Permutations and Combinations Rosen, Chapter 5.3 Motivating question In a family of 3, how many ways can we arrange the members of the family in a line for a photograph? 1 Permutations A permutation of
More informationChapter 3: Elements of Chance: Probability Methods
Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 34 20142015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,
More informationCHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events
CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes
More informationFunctional Skills Mathematics
Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page  Combined Events D/L. Page  9 West Nottinghamshire College D/L. Information Independent Events
More informationChapter 2. Permutations and Combinations
2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find
More informationUnit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
More informationCompound Probability. Set Theory. Basic Definitions
Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic
More informationSection Introduction to Sets
Section 1.1  Introduction to Sets Definition: A set is a welldefined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
More informationHow can I count arrangements?
10.3.2 How can I count arrangements? Permutations There are many kinds of counting problems. In this lesson you will learn to recognize problems that involve arrangements. In some cases outcomes will be
More information108 Probability of Compound Events
Use any method to find the total number of outcomes in each situation. 6. Nathan has 4 tshirts, 4 pairs of shorts, and 2 pairs of flipflops. Use the Fundamental Counting Principle to find the number
More informationMathematics Probability: Combinations
a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Probability: Combinations Science and Mathematics Education Research Group Supported by UBC Teaching
More informationSets, Venn Diagrams & Counting
MT 142 College Mathematics Sets, Venn Diagrams & Counting Module SC Terri Miller revised December 13, 2010 What is a set? Sets set is a collection of objects. The objects in the set are called elements
More information12.1 The Fundamental Counting Principle and Permutations
12.1 The Fundamental Counting Principle and Permutations The Fundamental Counting Principle Two Events: If one event can occur in ways and another event can occur in ways then the number of ways both events
More informationMissouri Assessment Program Spring Mathematics. Released Items. Grade 4
Missouri Assessment Program Spring 2006 Mathematics Released Items Grade 4 3 Study the map below. 10 9 Sam 8 7 6 North 5 Theater West East 4 3 2 1 South KEY = 1 block 0 1 2 3 4 5 6 7 8 9 10 Which of
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationNovember 8, Chapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol
More informationAdvanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY
Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue
More informationProbability. Engr. Jeffrey T. Dellosa.
Probability Engr. Jeffrey T. Dellosa Email: jtdellosa@gmail.com Outline Probability 2.1 Sample Space 2.2 Events 2.3 Counting Sample Points 2.4 Probability of an Event 2.5 Additive Rules 2.6 Conditional
More informationAlgebra II Probability and Statistics
Slide 1 / 241 Slide 2 / 241 Algebra II Probability and Statistics 20160115 www.njctl.org Slide 3 / 241 Table of Contents click on the topic to go to that section Sets Independence and Conditional Probability
More information4.4: The Counting Rules
4.4: The Counting Rules The counting rules can be used to discover the number of possible for a sequence of events. Fundamental Counting Rule In a sequence of n events in which the first one has k 1 possibilities
More informationProbability: introduction
May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an
More information1. Write the first five terms of the sequence with 0 3 and. 2. Write an explicit rule and a recursive rule for the sequence.
LESSON 12.1 Name.Date WarmUp Exercises For use before Lesson 12.1, pages 701707 Avnilnbic as a tr«ms(iarency Evaluate. 1. 3! 2. 7! 4! 4. 10! (104)! Daily Homework Quiz For use after Lesson 11.5, pages
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationStudent Exploration: Permutations and Combinations
Name: Date: Student Exploration: Permutations and Combinations Vocabulary: combination, factorial, permutation Prior Knowledge Question (Do this BEFORE using the Gizmo.) 1. Suppose you have a quarter,
More informationProbability. Key Definitions
1 Probability Key Definitions Probability: The likelihood or chance of something happening (between 0 and 1). Law of Large Numbers: The more data you have, the more true to the probability of the outcome
More informationProbability & Statistics  Grade 5
2006 Washington State Math Championship nless a particular problem directs otherwise, give an exact answer or one rounded to the nearest thousandth. Probability & Statistics  Grade 5 1. A single tensided
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More informationn r for the number. (n r)!r!
Throughout we use both the notations ( ) n r and C n n! r for the number (n r)!r! 1 Ten points are distributed around a circle How many triangles have all three of their vertices in this 10element set?
More informationTImath.com. Statistics. Too Many Choices!
Too Many Choices! ID: 11762 Time required 40 minutes Activity Overview In this activity, students will investigate the fundamental counting principle, permutations, and combinations. They will find the
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationProbability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37
Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More informationApril 10, ex) Draw a tree diagram of this situation.
April 10, 2014 121 Fundamental Counting Principle & Multiplying Probabilities 1. Outcome  the result of a single trial. 2. Sample Space  the set of all possible outcomes 3. Independent Events  when
More informationCS 237: Probability in Computing
CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 5: o Independence reviewed; Bayes' Rule o Counting principles and combinatorics; o Counting considered
More informationMost of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.
AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationFinite Math Section 6_4 Solutions and Hints
Finite Math Section 6_4 Solutions and Hints by Brent M. Dingle for the book: Finite Mathematics, 7 th Edition by S. T. Tan. DO NOT PRINT THIS OUT AND TURN IT IN!!!!!!!! This is designed to assist you in
More informationCOUNTING METHODS. Methods Used for Counting
Ch. 8 COUNTING METHODS From our preliminary work in probability, we often found ourselves wondering how many different scenarios there were in a given situation. In the beginning of that chapter, we merely
More informationTheoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?
Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number
More informationCounting Learning Outcomes
1 Counting Learning Outcomes List all possible outcomes of an experiment or event. Use systematic listing. Use twoway tables. Use tree diagrams. Solve problems using the fundamental principle of counting.
More informationCCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES:
CCM6+7+ Unit 11 ~ Page 1 CCM6+7+ UNIT 11 PROBABILITY Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: Unit 11 Vocabulary List 2 Simple Event Probability 37 Expected Outcomes Making Predictions 89 Theoretical
More informationRaise your hand if you rode a bus within the past month. Record the number of raised hands.
166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record
More informationAlgebra II. Slide 1 / 241. Slide 2 / 241. Slide 3 / 241. Probability and Statistics. Table of Contents click on the topic to go to that section
Slide 1 / 241 Slide 2 / 241 Algebra II Probability and Statistics 20160115 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 241 Sets Independence and Conditional Probability
More information