Lesson Sampling Distribution of Differences of Two Proportions

Size: px
Start display at page:

Download "Lesson Sampling Distribution of Differences of Two Proportions"

Transcription

1 STATWAY STUDENT HANDOUT STUDENT NAME DATE INTRODUCTION The GPS software company, TeleNav, recently commissioned a study on proportions of people who text while they drive. The study suggests that there are differences in the texting-while-driving habits of men and women. 1 We will compare the proportions of male and female texters who text frequently while driving. Our primary tool for this comparison is subtraction. That sounds simple enough, but before we can really know when one of these differences between two proportions is significant, we must understand the nature of the distribution of such differences. This understanding allows us to apply the methods of inference we have learned margins of error, confidence intervals, and hypothesis tests to the comparisons between two population proportions. For any two distributions of sample proportions, the distribution of differences between sample proportions can be very large and difficult to picture. To ease the comprehension of what a distribution of differences looks like, we will turn to two very small populations of texting drivers. The first population consists of two males who text while driving and the second population consists of three females who text while driving. Within these populations, frequent texting while driving is defined to be at least seven texts while driving per week. Rarely texting is defined as less than seven texts per week while driving. These are represented as follows: F = frequently texting (at least seven texts while driving per week) R = rarely texting (less than seven texts while driving per week) From these small populations, we will collect sample proportions of drivers who text frequently. We will then create a distribution of differences between male and female proportions. This small distribution will help us find a way to quantify the center and spread of such distributions of differences. 1 TeleNav, Inc. (2010). TeleNav-commissioned survey suggests both genders have similar views on abiding by and breaking the rules of the road. Retrieved July 14, 2010, from

2 STATWAY STUDENT HANDOUT 2 TRY THESE As mentioned, the first population we will consider consists of two men who text while driving, where one of these men texts frequently. The observations are {Frequent, Rare}. This is a small population of one frequent texter out of two, with a population proportion of 1/2, which is represented as π = ½ = 0.5. Now construct a sampling distribution of sample proportions from this population. 1 Treating this collection of two texting men as a small population, we will compute all sample proportions from samples of size n = 2. Sampling is done with replacement to preserve the independence of the trials (so some samples will include the same observation twice). In the following table, all possible samples are listed. For the case the frequent texter is chosen twice, the proportion is 2/2 = 1.0. For the case where the first pick is a frequent texter but the second is not, the proportion is 1/2 = 0.5. A Fill in the remaining sample proportions of men who text frequently, each of which are denoted as p m. Sample Drawn With Replacement Sample Proportion, B We have previously given formulas for the mean, standard error, and variance of a sampling distribution of sample proportions. These formulas require the population proportion of men

3 STATWAY STUDENT HANDOUT 3 who frequently text while driving, (π = ½ = 0.50) and the sample sizes (n = 2). Evaluate these formulas for the current sampling distribution. 2 Next, suppose we have a population of three women who text while driving and only one of these women texts frequently. These are represented as {Frequent, Rare, Rare} A What is the population proportion of frequent texters in the population of women? B Compute all sample proportions from samples of women texters of size n = 2. Denote the sample proportion of frequently texting women as p w. Sample Drawn With Replacement Sample Proportion, 2/2 = 1.0 1/2 = 0.5 0/2 = 0.0 1/2 = /2 = 0.0

4 Proportions of Women Who Text Frequently STATWAY STUDENT HANDOUT 4 C For this collection of proportions from the women drivers whose population proportion is π w = 1/3 = 0.333, compute the mean, standard error, and variance. Remember that the samples are all of size n = 2. 3 Our goal is to discover the nature of the distribution of all differences (p m p w ). To accomplish this, consider the difference of every value of p m minus every value of p w. A In the top row of the following table, all men s proportions (p m ) found in Question 1b are listed. In the left column, all women s proportions (p w ) found in Question 2b are listed. Most of the differences (p m p w ) are listed as well, but seven are missing. In any cell where no difference is given, record the value of p m p w, where p m is recorded at the top of the cell s column and p w is recorded at the left of the cell s row. Proportions of Men Who Text Frequently The total number of differences is 9 4 = 36.

5 STATWAY STUDENT HANDOUT 5 B Fill in the frequency table with the frequencies and their corresponding probabilities as relative frequencies for the various values of p m p w. Record the probabilities as unreduced fractions whose denominators are each 36. The distribution of probabilities is the sampling distribution of differences. Frequency Probability Total 36 36/36 = 1 C Sketch a histogram of the probability distribution of p m p w on the graph below. The Sampling Distribution of Differences, 12/36 10/36 8/36 6/36 4/36 2/ This distribution gives probabilities for every possible difference between male proportions of frequent texters and female proportions of frequent texters. Is the distribution approximately symmetric? Is the distribution approximately bell-shaped?

6 STATWAY STUDENT HANDOUT 6 Recalling that the mean is a similar to a balancing point for a probability distribution, give a visual estimate of the mean. 4 Use technology to compute the mean and standard deviation of all differences summarized by the frequency table in Question 3 (or your instructor can provide these). A What is the mean of differences? Is this value close to the estimate made in Question 3c? B Compute the difference of the means of the men and women from Questions 1b and 2c. C Comparing your answers in Questions 4a and 4b, complete the statement below. The mean of differences in Question 4a is the of the means from Questions 1b and 2c. D Compute the variance of all differences (by squaring the standard deviation) summarized by the frequency table in Question 3b (or your instructor can provide this). E Compute the sum of the variances of men and women texters from Questions 1b and 2c. F Comparing your answers in Questions 4d and 4e, complete the following statement. The variance of differences in Question 4d is the of the variances from Questions 1b and 2c. G Compute the standard deviation (or error) of all differences of proportions by taking the square root of the variance from Question 4d. Round this answer to the nearest tenth.

7 STATWAY STUDENT HANDOUT 7 H Now that you have quantified the mean and standard deviation (or error) of differences, you can begin to make inferences regarding extreme values. Do you consider a difference of p m p w = 1.0 to be unusually low? Why? Do you consider a difference of p m p w = 0.5 to be unusually high? Why? NEXT STEPS For this part of the lesson, we will expand our simulated populations of men and women using decks of cards. Your instructor will provide a deck of black cards and a deck of blue cards. These decks represent the following. The black deck is the population of males who text while driving. The blue deck is the population of females who text while driving. Do not count the cards in the decks! Just as the exact truth is always unknown in large populations, the truth must remain unknown with the decks of cards. In this way, you can experience the uncertainty that occurs when working with samples. Within each deck, there are red cards and black cards. The color of each card s front side represents the following: A card with a red front is a person who sends texts frequently while driving. A card with a black front is a person who sends texts rarely while driving. Your instructor has manipulated the decks of cards so that the proportions of red cards in each deck roughly match the proportions of men and women drivers who text frequently in the real world.

8 STATWAY STUDENT HANDOUT 8 TRY THESE 5 From each deck of cards, you and a partner will sample 10 cards, randomly replacing each card after it is drawn before drawing the next card to preserve the independence of the trials. A Shuffle the black deck (representing the men who text while driving) and draw 10 cards with replacement. Count the red front cards drawn. What is the sample proportion of frequent texters for the men (the number of red front cards divided by the sample size n = 10)? The dotplot below includes a simulation of 30 additional proportions (p m ) generated by drawing cards from a deck, just as you have done. Add your data point to this dotplot. Men who Text Frequently Proportions of Men who Text Frequently While Driving (Seven or More Texts Per Week) Men Proportions Population includes only men who admit to texting while driving. B Shuffle the blue deck (representing the women who text while driving) and draw 10 cards with replacement. Count the red front cards drawn. What is the sample proportion of frequent texters for the women (the number of red front cards divided by the sample size n = 10)?

9 STATWAY STUDENT HANDOUT 9 Once again, a dotplot is provided below which includes 30 proportions (p w ) generated in the same way. Add your proportion to this dotplot. Women who Text Frequently Proportions of Women who Text Frequently While Driving (Seven or More Texts Per Week) Women Proportions Population includes only women who admit to texting while driving. C Compute the difference between the proportions you found in Questions 5a and 5b. The dotplot below is generated by taking differences between the sample proportions p m and p w in the previous dotplots. Add your difference to the dotplot of differences below. Differences Between Men and Women Proportions For Frequent Texters (Seven or More Texts Per Week) Differences Populations include only people who admit to texting while driving.

10 STATWAY STUDENT HANDOUT 10 D Add any additional differences (p m p w ) generated by others in your class to this dotplot. From the dotplot of texting men, estimate the mean by picking one proportion that is representative of the group s center. E From the dotplot of texting women, estimate the mean by picking one proportion that is representative of that group s center. F The difference of means is the mean of the differences (p m p w ). Thus, an estimate of the mean difference can be found by subtracting the estimated means from Questions 5d and 5e. Subtract these values. Does this value make a good representation of the center of the dotplot of differences? G Using complete sentences, refer to the dotplot in Question 5c to describe the distribution of differences (p m p w ) in terms of shape, symmetry, and center. 6 The variances of sample proportions (p m and p w ) are each computed as the square of the standard error, When the population proportions (π) are unknown, estimate them using sample proportions p m and p w ). The variance of the differences (p m p w ) is the sum of the individual variances. This variance is therefore estimated as a sum,

11 STATWAY STUDENT HANDOUT 11 Applying a square root gives an estimate of the standard error of differences (p m p w ). A Use your representative values for p m and p w (from Questions 5d and 5e) to estimate the standard error of differences between all such proportions. B Using the estimated mean of p m p w values (from Question 5f) and the standard error (from Question 6a), do you consider a difference of p m p w = 0.6 to be unusually high? C Using the estimated mean of the representative value of p m p w (from Question 5f) and the standard error (from Question 6a), do you consider a difference of p m p w = 0 to be unusually low? D Suppose that the mean value of p m is the population proportion, π m, of men who text successively. Suppose also that the mean value of p w is the population proportion, π w, of women who text successively. What is implied by the approximate difference between π m and π w given in your answer from 6c above?

12 STATWAY STUDENT HANDOUT 12 TAKE IT HOME To compare the proportion of men who are left-handed to the proportion of women who are left-handed, twenty-five samples, each containing 575 men each, were gathered. From each of these samples of men, a sample proportion, p m, of those who are left-handed was computed. Additionally, twenty samples of 815 women each were gathered, and from each, a sample proportion, p w, of women who are left-handed was computed. Thus, twenty-five sample proportions, p m, of left-handed men, and twenty sample proportions, p w, of lefthanded women were gathered. From these, the collection of all possible differences, p m p w, was constructed. The distribution of differences is plotted below. Differences of Left Handed Proportions For Men and Women Male Proportion Minus Female Proportion Twenty-five samples of men gathered with 575 members in each. Twenty Samples of women gathered with 815 members each. 1 Do you consider an 8% difference between the proportions of men and women who are lefthanded likely? If unlikely, is the difference too high or too low? 2 If you assume an 8% difference, is the proportion of left-handedness higher for men or women?

13 STATWAY STUDENT HANDOUT 13 3 Do you consider a 1% difference likely? If unlikely, is the difference too high or too low? 4 If you assume a 1% difference, is the proportion of left-handedness higher for men or women? 5 Pick a difference that you consider a representative value of the differences on the dotplot. 6 Does your chosen difference allow for p m and p w to be equal? If not, then which is greater? 7 Suppose that a random proportion of left-handedness for men, p m = 0.10, is chosen from a sample of size n m = 575. Suppose also that a random proportion of left-handedness for women, p w = 0.08, is chosen from a sample of size n w = 815. Estimate the standard error in the differences of sample proportions, p m p w, rounded to two places after the decimal. 8 Estimate, roughly, the number of standard errors that the difference, p m p w = 0.08, lies from your representative difference in Question 5. Does the estimated value support your answer from Question 1? 9 Estimate, roughly, the number of standard errors that the difference, p m p w = 0.01, lies from your representative difference in Question 5. Does the estimated value support your answer from Question 3?

14 STATWAY STUDENT HANDOUT This lesson is part of STATWAY, A Pathway Through College Statistics, which is a product of a Carnegie Networked Improvement Community that seeks to advance student success. Version 1.0, A Pathway Through Statistics, Statway was created by the Charles A. Dana Center at the University of Texas at Austin under sponsorship of the Carnegie Foundation for the Advancement of Teaching. This version 1.5 and all subsequent versions, result from the continuous improvement efforts of the Carnegie Networked Improvement Community. The network brings together community college faculty and staff, designers, researchers and developers. It is an open-resource research and development community that seeks to harvest the wisdom of its diverse participants in systematic and disciplined inquiries to improve developmental mathematics instruction. For more information on the Statway Networked Improvement Community, please visit carnegiefoundation.org. For the most recent version of instructional materials, visit Statway.org/kernel STATWAY and the Carnegie Foundation logo are trademarks of the Carnegie Foundation for the Advancement of Teaching. A Pathway Through College Statistics may be used as provided in the CC BY license, but neither the Statway trademark nor the Carnegie Foundation logo may be used without the prior written consent of the Carnegie Foundation.

Laboratory 1: Uncertainty Analysis

Laboratory 1: Uncertainty Analysis University of Alabama Department of Physics and Astronomy PH101 / LeClair May 26, 2014 Laboratory 1: Uncertainty Analysis Hypothesis: A statistical analysis including both mean and standard deviation can

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) Blood type Frequency MATH 1342 Final Exam Review Name Construct a frequency distribution for the given qualitative data. 1) The blood types for 40 people who agreed to participate in a medical study were as follows. 1) O A

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

FALL 2015 STA 2023 INTRODUCTORY STATISTICS-1 PROJECT INSTRUCTOR: VENKATESWARA RAO MUDUNURU

FALL 2015 STA 2023 INTRODUCTORY STATISTICS-1 PROJECT INSTRUCTOR: VENKATESWARA RAO MUDUNURU 1 IMPORTANT: FALL 2015 STA 2023 INTRODUCTORY STATISTICS-1 PROJECT INSTRUCTOR: VENKATESWARA RAO MUDUNURU EMAIL: VMUDUNUR@MAIL.USF.EDU You should submit the answers for this project in the link provided

More information

2.2 More on Normal Distributions and Standard Normal Calculations

2.2 More on Normal Distributions and Standard Normal Calculations The distribution of heights of adult American men is approximately normal with mean 69 inches and standard deviation 2.5 inches. Use the 68-95-99.7 rule to answer the following questions: What percent

More information

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions:

Math 58. Rumbos Fall Solutions to Exam Give thorough answers to the following questions: Math 58. Rumbos Fall 2008 1 Solutions to Exam 2 1. Give thorough answers to the following questions: (a) Define a Bernoulli trial. Answer: A Bernoulli trial is a random experiment with two possible, mutually

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Sampling Terminology. all possible entities (known or unknown) of a group being studied. MKT 450. MARKETING TOOLS Buyer Behavior and Market Analysis

Sampling Terminology. all possible entities (known or unknown) of a group being studied. MKT 450. MARKETING TOOLS Buyer Behavior and Market Analysis Sampling Terminology MARKETING TOOLS Buyer Behavior and Market Analysis Population all possible entities (known or unknown) of a group being studied. Sampling Procedures Census study containing data from

More information

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules + Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

More information

Session 5 Variation About the Mean

Session 5 Variation About the Mean Session 5 Variation About the Mean Key Terms for This Session Previously Introduced line plot median variation New in This Session allocation deviation from the mean fair allocation (equal-shares allocation)

More information

Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble

Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble Example 1. An urn contains 100 marbles: 60 blue marbles and 40 red marbles. A marble is drawn from the urn, what is the probability that the marble is blue? Assumption: Each marble is just as likely to

More information

4 th Grade Mathematics Learning Targets By Unit

4 th Grade Mathematics Learning Targets By Unit INSTRUCTIONAL UNIT UNIT 1: WORKING WITH WHOLE NUMBERS UNIT 2: ESTIMATION AND NUMBER THEORY PSSA ELIGIBLE CONTENT M04.A-T.1.1.1 Demonstrate an understanding that in a multi-digit whole number (through 1,000,000),

More information

Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103

Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103 Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103 1. (8) The following are amounts of time (minutes) spent on hygiene and grooming

More information

Section 1.5 Graphs and Describing Distributions

Section 1.5 Graphs and Describing Distributions Section 1.5 Graphs and Describing Distributions Data can be displayed using graphs. Some of the most common graphs used in statistics are: Bar graph Pie Chart Dot plot Histogram Stem and leaf plot Box

More information

6.1 (CD-ROM TOPIC) USING THE STANDARDIZED NORMAL DISTRIBUTION TABLE

6.1 (CD-ROM TOPIC) USING THE STANDARDIZED NORMAL DISTRIBUTION TABLE .1: (CD-ROM Topic) Using the Standardized Normal Distribution Table CD-1.1 (CD-ROM TOPIC) USING THE STANDARDIZED NORMAL DISTRIBUTION TABLE Any set of normally distributed data can be converted to its standardized

More information

GREATER CLARK COUNTY SCHOOLS PACING GUIDE. Algebra I MATHEMATICS G R E A T E R C L A R K C O U N T Y S C H O O L S

GREATER CLARK COUNTY SCHOOLS PACING GUIDE. Algebra I MATHEMATICS G R E A T E R C L A R K C O U N T Y S C H O O L S GREATER CLARK COUNTY SCHOOLS PACING GUIDE Algebra I MATHEMATICS 2014-2015 G R E A T E R C L A R K C O U N T Y S C H O O L S ANNUAL PACING GUIDE Quarter/Learning Check Days (Approx) Q1/LC1 11 Concept/Skill

More information

CHAPTER 6 PROBABILITY. Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes

CHAPTER 6 PROBABILITY. Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes CHAPTER 6 PROBABILITY Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes these two concepts a step further and explains their relationship with another statistical concept

More information

Independence Is The Word

Independence Is The Word Problem 1 Simulating Independent Events Describe two different events that are independent. Describe two different events that are not independent. The probability of obtaining a tail with a coin toss

More information

Chapter 19. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1

Chapter 19. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1 Chapter 19 Inference about a Population Proportion BPS - 5th Ed. Chapter 19 1 Proportions The proportion of a population that has some outcome ( success ) is p. The proportion of successes in a sample

More information

Real Numbers and the Number Line. Unit 1 Lesson 3

Real Numbers and the Number Line. Unit 1 Lesson 3 Real Numbers and the Number Line Unit 1 Lesson 3 Students will be able to: graph and compare real numbers using the number line. Key Vocabulary: Real Number Rational Number Irrational number Non-Integers

More information

Spring 2017 Math 54 Test #2 Name:

Spring 2017 Math 54 Test #2 Name: Spring 2017 Math 54 Test #2 Name: You may use a TI calculator and formula sheets from the textbook. Show your work neatly and systematically for full credit. Total points: 101 1. (6) Suppose P(E) = 0.37

More information

Section 6.5 Conditional Probability

Section 6.5 Conditional Probability Section 6.5 Conditional Probability Example 1: An urn contains 5 green marbles and 7 black marbles. Two marbles are drawn in succession and without replacement from the urn. a) What is the probability

More information

Hypergeometric Probability Distribution

Hypergeometric Probability Distribution Hypergeometric Probability Distribution Example problem: Suppose 30 people have been summoned for jury selection, and that 12 people will be chosen entirely at random (not how the real process works!).

More information

Chapter 4. Displaying and Summarizing Quantitative Data. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 4. Displaying and Summarizing Quantitative Data. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 4 Displaying and Summarizing Quantitative Data Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing With a Lot of Numbers Summarizing the data will help us when we look at large sets of quantitative

More information

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses

a) Getting 10 +/- 2 head in 20 tosses is the same probability as getting +/- heads in 320 tosses Question 1 pertains to tossing a fair coin (8 pts.) Fill in the blanks with the correct numbers to make the 2 scenarios equally likely: a) Getting 10 +/- 2 head in 20 tosses is the same probability as

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8

More information

Chapter 20. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1

Chapter 20. Inference about a Population Proportion. BPS - 5th Ed. Chapter 19 1 Chapter 20 Inference about a Population Proportion BPS - 5th Ed. Chapter 19 1 Proportions The proportion of a population that has some outcome ( success ) is p. The proportion of successes in a sample

More information

NUMBERS & OPERATIONS. 1. Understand numbers, ways of representing numbers, relationships among numbers and number systems.

NUMBERS & OPERATIONS. 1. Understand numbers, ways of representing numbers, relationships among numbers and number systems. 7 th GRADE GLE S NUMBERS & OPERATIONS 1. Understand numbers, ways of representing numbers, relationships among numbers and number systems. A) Read, write and compare numbers (MA 5 1.10) DOK 1 * compare

More information

Exam III Review Problems

Exam III Review Problems c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

More information

Raise your hand if you rode a bus within the past month. Record the number of raised hands.

Raise your hand if you rode a bus within the past month. Record the number of raised hands. 166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

More information

Square Roots and the Pythagorean Theorem

Square Roots and the Pythagorean Theorem UNIT 1 Square Roots and the Pythagorean Theorem Just for Fun What Do You Notice? Follow the steps. An example is given. Example 1. Pick a 4-digit number with different digits. 3078 2. Find the greatest

More information

MATH-1110 FINAL EXAM FALL 2010

MATH-1110 FINAL EXAM FALL 2010 MATH-1110 FINAL EXAM FALL 2010 FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF EACH SHEET. SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 EE 241 Experiment #3: USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1 PURPOSE: To become familiar with additional the instruments in the laboratory. To become aware

More information

Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Unit 11 Probability. Round 1 Round 2 Round 3 Round 4 Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

More information

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

More information

SAMPLING DISTRIBUTION MODELS TODAY YOU WILL NEED: PENCIL SCRATCH PAPER A PARTNER (YOUR CHOICE) ONE THUMBTACK PER GROUP Z-SCORE CHART

SAMPLING DISTRIBUTION MODELS TODAY YOU WILL NEED: PENCIL SCRATCH PAPER A PARTNER (YOUR CHOICE) ONE THUMBTACK PER GROUP Z-SCORE CHART SAMPLING DISTRIBUTION MODELS TODAY YOU WILL NEED: PENCIL SCRATCH PAPER A PARTNER (YOUR CHOICE) ONE THUMBTACK PER GROUP Z-SCORE CHART FLIPPING THUMBTACKS PART 1 I want to know the probability that, when

More information

Mathematics Success Grade 8

Mathematics Success Grade 8 Mathematics Success Grade 8 T429 [OBJECTIVE] The student will solve systems of equations by graphing. [PREREQUISITE SKILLS] solving equations [MATERIALS] Student pages S207 S220 Rulers [ESSENTIAL QUESTIONS]

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Activity: Do You Know Your s? (Part 1) TEKS: (4.13) Probability and statistics. The student solves problems by collecting, organizing, displaying, and interpreting sets of data.

More information

Chapter 4. September 08, appstats 4B.notebook. Displaying Quantitative Data. Aug 4 9:13 AM. Aug 4 9:13 AM. Aug 27 10:16 PM.

Chapter 4. September 08, appstats 4B.notebook. Displaying Quantitative Data. Aug 4 9:13 AM. Aug 4 9:13 AM. Aug 27 10:16 PM. Objectives: Students will: Chapter 4 1. Be able to identify an appropriate display for any quantitative variable: stem leaf plot, time plot, histogram and dotplot given a set of quantitative data. 2. Be

More information

C) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11?

C) 1 4. Find the indicated probability. 2) A die with 12 sides is rolled. What is the probability of rolling a number less than 11? Chapter Probability Practice STA03, Broward College Answer the question. ) On a multiple choice test with four possible answers (like this question), what is the probability of answering a question correctly

More information

12.1 The Fundamental Counting Principle and Permutations

12.1 The Fundamental Counting Principle and Permutations 12.1 The Fundamental Counting Principle and Permutations The Fundamental Counting Principle Two Events: If one event can occur in ways and another event can occur in ways then the number of ways both events

More information

Univariate Descriptive Statistics

Univariate Descriptive Statistics Univariate Descriptive Statistics Displays: pie charts, bar graphs, box plots, histograms, density estimates, dot plots, stemleaf plots, tables, lists. Example: sea urchin sizes Boxplot Histogram Urchin

More information

NSCAS - Math Table of Specifications

NSCAS - Math Table of Specifications NSCAS - Math Table of Specifications MA 3. MA 3.. NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics

More information

Please Turn Over Page 1 of 7

Please Turn Over Page 1 of 7 . Page 1 of 7 ANSWER ALL QUESTIONS Question 1: (25 Marks) A random sample of 35 homeowners was taken from the village Penville and their ages were recorded. 25 31 40 50 62 70 99 75 65 50 41 31 25 26 31

More information

Grades 6 8 Innoventure Components That Meet Common Core Mathematics Standards

Grades 6 8 Innoventure Components That Meet Common Core Mathematics Standards Grades 6 8 Innoventure Components That Meet Common Core Mathematics Standards Strand Ratios and Relationships The Number System Expressions and Equations Anchor Standard Understand ratio concepts and use

More information

CALCULATING SQUARE ROOTS BY HAND By James D. Nickel

CALCULATING SQUARE ROOTS BY HAND By James D. Nickel By James D. Nickel Before the invention of electronic calculators, students followed two algorithms to approximate the square root of any given number. First, we are going to investigate the ancient Babylonian

More information

The rectangle above has been divided into squares. Assume that the length of each side of a small square is 1 cm.

The rectangle above has been divided into squares. Assume that the length of each side of a small square is 1 cm. Powers and Roots SUGGESTED LEARNING STRATEGIES: Activating Prior Knowledge, Think/Pair/Share, Quickwrite, Group Presentation, Visualize, Create Representations Dominique Wilkins Middle School is holding

More information

Objective: Plot points, using them to draw lines in the plane, and describe

Objective: Plot points, using them to draw lines in the plane, and describe NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 7 5 6 Lesson 7 Objective: Plot points, using them to draw lines in the plane, and describe patterns within the coordinate pairs. Suggested Lesson Structure

More information

Statistics 101: Section L Laboratory 10

Statistics 101: Section L Laboratory 10 Statistics 101: Section L Laboratory 10 This lab looks at the sampling distribution of the sample proportion pˆ and probabilities associated with sampling from a population with a categorical variable.

More information

What is the expected number of rolls to get a Yahtzee?

What is the expected number of rolls to get a Yahtzee? Honors Precalculus The Yahtzee Problem Name Bolognese Period A Yahtzee is rolling 5 of the same kind with 5 dice. The five dice are put into a cup and poured out all at once. Matching dice are kept out

More information

11-1 Practice. Designing a Study

11-1 Practice. Designing a Study 11-1 Practice Designing a Study Determine whether each situation calls for a survey, an experiment, or an observational study. Explain your reasoning. 1. You want to compare the health of students who

More information

Math + 4 (Red) SEMESTER 1. { Pg. 1 } Unit 1: Whole Number Sense. Unit 2: Whole Number Operations. Unit 3: Applications of Operations

Math + 4 (Red) SEMESTER 1.  { Pg. 1 } Unit 1: Whole Number Sense. Unit 2: Whole Number Operations. Unit 3: Applications of Operations Math + 4 (Red) This research-based course focuses on computational fluency, conceptual understanding, and problem-solving. The engaging course features new graphics, learning tools, and games; adaptive

More information

MAT Midterm Review

MAT Midterm Review MAT 120 - Midterm Review Name Identify the population and the sample. 1) When 1094 American households were surveyed, it was found that 67% of them owned two cars. Identify whether the statement describes

More information

**Gettysburg Address Spotlight Task

**Gettysburg Address Spotlight Task **Gettysburg Address Spotlight Task Authorship of literary works is often a topic for debate. One method researchers use to decide who was the author is to look at word patterns from known writing of the

More information

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION Name: Period: Date: NON-CALCULATOR SECTION Vocabulary: Define each word and give an example. 1. discrete mathematics 2. dependent outcomes 3. series Short Answer: 4. Describe when to use a combination.

More information

Statistical Hypothesis Testing

Statistical Hypothesis Testing Statistical Hypothesis Testing Statistical Hypothesis Testing is a kind of inference Given a sample, say something about the population Examples: Given a sample of classifications by a decision tree, test

More information

Residential Paint Survey: Report & Recommendations MCKENZIE-MOHR & ASSOCIATES

Residential Paint Survey: Report & Recommendations MCKENZIE-MOHR & ASSOCIATES Residential Paint Survey: Report & Recommendations November 00 Contents OVERVIEW...1 TELEPHONE SURVEY... FREQUENCY OF PURCHASING PAINT... AMOUNT PURCHASED... ASSISTANCE RECEIVED... PRE-PURCHASE BEHAVIORS...

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 2.2- #

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 2.2- # Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Chapter 2 Summarizing and Graphing Data 2-1 Review and Preview 2-2 Frequency Distributions 2-3 Histograms

More information

1. How to identify the sample space of a probability experiment and how to identify simple events

1. How to identify the sample space of a probability experiment and how to identify simple events Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

More information

GREATER CLARK COUNTY SCHOOLS PACING GUIDE. Grade 4 Mathematics GREATER CLARK COUNTY SCHOOLS

GREATER CLARK COUNTY SCHOOLS PACING GUIDE. Grade 4 Mathematics GREATER CLARK COUNTY SCHOOLS GREATER CLARK COUNTY SCHOOLS PACING GUIDE Grade 4 Mathematics 2014-2015 GREATER CLARK COUNTY SCHOOLS ANNUAL PACING GUIDE Learning Old Format New Format Q1LC1 4.NBT.1, 4.NBT.2, 4.NBT.3, (4.1.1, 4.1.2,

More information

GRADE 4. M : Solve division problems without remainders. M : Recall basic addition, subtraction, and multiplication facts.

GRADE 4. M : Solve division problems without remainders. M : Recall basic addition, subtraction, and multiplication facts. GRADE 4 Students will: Operations and Algebraic Thinking Use the four operations with whole numbers to solve problems. 1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as

More information

MANIPULATIVE MATHEMATICS FOR STUDENTS

MANIPULATIVE MATHEMATICS FOR STUDENTS MANIPULATIVE MATHEMATICS FOR STUDENTS Manipulative Mathematics Using Manipulatives to Promote Understanding of Elementary Algebra Concepts Lynn Marecek MaryAnne Anthony-Smith This file is copyright 07,

More information

Mathematics (Project Maths)

Mathematics (Project Maths) 2010. M128 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Sample Paper Mathematics (Project Maths) Paper 2 Ordinary Level Time: 2 hours, 30 minutes 300 marks

More information

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of

Game Mechanics Minesweeper is a game in which the player must correctly deduce the positions of Table of Contents Game Mechanics...2 Game Play...3 Game Strategy...4 Truth...4 Contrapositive... 5 Exhaustion...6 Burnout...8 Game Difficulty... 10 Experiment One... 12 Experiment Two...14 Experiment Three...16

More information

7 th grade Math Standards Priority Standard (Bold) Supporting Standard (Regular)

7 th grade Math Standards Priority Standard (Bold) Supporting Standard (Regular) 7 th grade Math Standards Priority Standard (Bold) Supporting Standard (Regular) Unit #1 7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers;

More information

Proportions. Chapter 19. Inference about a Proportion Simple Conditions. Inference about a Proportion Sampling Distribution

Proportions. Chapter 19. Inference about a Proportion Simple Conditions. Inference about a Proportion Sampling Distribution Proportions Chapter 19!!The proportion of a population that has some outcome ( success ) is p.!!the proportion of successes in a sample is measured by the sample proportion: Inference about a Population

More information

1 2-step and other basic conditional probability problems

1 2-step and other basic conditional probability problems Name M362K Exam 2 Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. 1 2-step and other basic conditional probability problems 1. Suppose A, B, C are

More information

Ten Calculator Activities- Teacher s Notes

Ten Calculator Activities- Teacher s Notes Ten Calculator Activities- Teacher s Notes Introduction These ten activity sheets can be photocopied and given to pupils at Key Stage 2. It is intended that the teacher introduces and discusses each activity

More information

Revised Elko County School District 2 nd Grade Math Learning Targets

Revised Elko County School District 2 nd Grade Math Learning Targets Elko County School District 2 nd Grade Math Learning Targets Content Standard 1.0 Students will accurately calculate and use estimation techniques, number relationships, operation rules, and algorithms;

More information

North Seattle Community College Winter ELEMENTARY STATISTICS 2617 MATH Section 05, Practice Questions for Test 2 Chapter 3 and 4

North Seattle Community College Winter ELEMENTARY STATISTICS 2617 MATH Section 05, Practice Questions for Test 2 Chapter 3 and 4 North Seattle Community College Winter 2012 ELEMENTARY STATISTICS 2617 MATH 109 - Section 05, Practice Questions for Test 2 Chapter 3 and 4 1. Classify each statement as an example of empirical probability,

More information

Name Class Date. Introducing Probability Distributions

Name Class Date. Introducing Probability Distributions Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

More information

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = =

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = = Math 115 Discrete Math Final Exam December 13, 2000 Your name It is important that you show your work. 1. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 199 and 98. In

More information

It is important that you show your work. The total value of this test is 220 points.

It is important that you show your work. The total value of this test is 220 points. June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

MATRIX SAMPLING DESIGNS FOR THE YEAR2000 CENSUS. Alfredo Navarro and Richard A. Griffin l Alfredo Navarro, Bureau of the Census, Washington DC 20233

MATRIX SAMPLING DESIGNS FOR THE YEAR2000 CENSUS. Alfredo Navarro and Richard A. Griffin l Alfredo Navarro, Bureau of the Census, Washington DC 20233 MATRIX SAMPLING DESIGNS FOR THE YEAR2000 CENSUS Alfredo Navarro and Richard A. Griffin l Alfredo Navarro, Bureau of the Census, Washington DC 20233 I. Introduction and Background Over the past fifty years,

More information

A natural number is called a perfect cube if it is the cube of some. some natural number.

A natural number is called a perfect cube if it is the cube of some. some natural number. A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m and n are natural numbers. A natural number is called a perfect

More information

Math 1313 Conditional Probability. Basic Information

Math 1313 Conditional Probability. Basic Information Math 1313 Conditional Probability Basic Information We have already covered the basic rules of probability, and we have learned the techniques for solving problems with large sample spaces. Next we will

More information

An Overview of Mathematics 4

An Overview of Mathematics 4 An Overview of Mathematics 4 Number (N) read, write, represent, and describe whole numbers to 10 000 using concrete materials, pictures, expressions (e.g., 400 + 7), words, place-value charts, and symbols

More information

Lesson 11: Linear and Exponential Investigations

Lesson 11: Linear and Exponential Investigations Hart Interactive Algebra Lesson Lesson : Linear and Exponential Investigations Opening Exercise In this lesson, you ll be exploring linear and exponential function in five different investigations. You

More information

Review of Probability

Review of Probability Review of Probability 1) What is probability? ( ) Consider the following two problems: Select 2 cards from a standard deck of 52 cards with replacement. What is the probability of obtaining two kings?

More information

Gathering information about an entire population often costs too much or is virtually impossible.

Gathering information about an entire population often costs too much or is virtually impossible. Sampling Gathering information about an entire population often costs too much or is virtually impossible. Instead, we use a sample of the population. A sample should have the same characteristics as the

More information

Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2)

Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2) Math 247: Continuous Random Variables: The Uniform Distribution (Section 6.1) and The Normal Distribution (Section 6.2) The Uniform Distribution Example: If you are asked to pick a number from 1 to 10

More information

Exam #1. Good luck! Page 1 of 7

Exam #1. Good luck! Page 1 of 7 Exam # Total: 00 points Date: July, 008 Time: :00 :0 You have hour and 0 minutes to finish the exam. Please read the question carefully and assign your time smartly. Please PRINIT your name on each page

More information

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY TJP TOP TIPS FOR IGCSE STATS & PROBABILITY Dr T J Price, 2011 First, some important words; know what they mean (get someone to test you): Mean the sum of the data values divided by the number of items.

More information

California 1 st Grade Standards / Excel Math Correlation by Lesson Number

California 1 st Grade Standards / Excel Math Correlation by Lesson Number California 1 st Grade Standards / Excel Math Correlation by Lesson Lesson () L1 Using the numerals 0 to 9 Sense: L2 Selecting the correct numeral for a Sense: 2 given set of pictures Grouping and counting

More information

Warm Up The following table lists the 50 states.

Warm Up The following table lists the 50 states. .notebook Warm Up The following table lists the 50 states. (a) Obtain a simple random sample of size 10 using Table I in Appendix A, a graphing calculator, or computer software. 4 basic sampling techniques

More information

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

More information

Chapter 1. Statistics. Individuals and Variables. Basic Practice of Statistics - 3rd Edition. Chapter 1 1. Picturing Distributions with Graphs

Chapter 1. Statistics. Individuals and Variables. Basic Practice of Statistics - 3rd Edition. Chapter 1 1. Picturing Distributions with Graphs Chapter 1 Picturing Distributions with Graphs BPS - 3rd Ed. Chapter 1 1 Statistics Statistics is a science that involves the extraction of information from numerical data obtained during an experiment

More information

Confidence Intervals. Class 23. November 29, 2011

Confidence Intervals. Class 23. November 29, 2011 Confidence Intervals Class 23 November 29, 2011 Last Time When sampling from a population in which 30% of individuals share a certain characteristic, we identified the reasonably likely values for the

More information

German Tanks: Exploring Sampling Distributions Name

German Tanks: Exploring Sampling Distributions Name Open the TI-Nspire document German_Tanks:_Exploring_Sampling_Distributions.tns. Often real life challenges indicate the importance of what we study. The following activity is based on a genuine problem

More information

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1 Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

More information

Key Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events

Key Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events 15-4 Compound Probability TEKS FOCUS TEKS (1)(E) Apply independence in contextual problems. TEKS (1)(B) Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy,

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

STAT 100 Fall 2014 Midterm 1 VERSION B

STAT 100 Fall 2014 Midterm 1 VERSION B STAT 100 Fall 2014 Midterm 1 VERSION B Instructor: Richard Lockhart Name Student Number Instructions: This is a closed book exam. You may use a calculator. It is a 1 hour long exam. It is out of 30 marks

More information

SAMPLE. This chapter deals with the construction and interpretation of box plots. At the end of this chapter you should be able to:

SAMPLE. This chapter deals with the construction and interpretation of box plots. At the end of this chapter you should be able to: find the upper and lower extremes, the median, and the upper and lower quartiles for sets of numerical data calculate the range and interquartile range compare the relative merits of range and interquartile

More information

1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere.

1. Let X be a continuous random variable such that its density function is 8 < k(x 2 +1), 0 <x<1 f(x) = 0, elsewhere. Lebanese American University Spring 2006 Byblos Date: 3/03/2006 Duration: h 20. Let X be a continuous random variable such that its density function is 8 < k(x 2 +), 0

More information

MAT 1272 STATISTICS LESSON STATISTICS AND TYPES OF STATISTICS

MAT 1272 STATISTICS LESSON STATISTICS AND TYPES OF STATISTICS MAT 1272 STATISTICS LESSON 1 1.1 STATISTICS AND TYPES OF STATISTICS WHAT IS STATISTICS? STATISTICS STATISTICS IS THE SCIENCE OF COLLECTING, ANALYZING, PRESENTING, AND INTERPRETING DATA, AS WELL AS OF MAKING

More information

This page intentionally left blank

This page intentionally left blank Appendix E Labs This page intentionally left blank Dice Lab (Worksheet) Objectives: 1. Learn how to calculate basic probabilities of dice. 2. Understand how theoretical probabilities explain experimental

More information

Austin and Sara s Game

Austin and Sara s Game Austin and Sara s Game 1. Suppose Austin picks a random whole number from 1 to 5 twice and adds them together. And suppose Sara picks a random whole number from 1 to 10. High score wins. What would you

More information