BIOL2300 Biostatistics Chapter 4 Counting and Probability

Size: px
Start display at page:

Download "BIOL2300 Biostatistics Chapter 4 Counting and Probability"

Transcription

1 BIOL2300 Biostatistics Chapter 4 Counting and Probability

2

3 Event, sample space sample space (generally denoted Ω, pronounced omega ): set of outcomes of a random experiment {H,T} set of coin flips {1,2,3,4,5,6} set of outcomes of die roll {HH,HT,TH,TT} set of 2 consecutive coin flips simple event: element of sample space

4 Events Event A is subset of Ω, i.e. A µ Ω. Examples: {1,3,5} set of odd numbered outcomes of die roll {1,3,5,...,35} = reds in roulette {2,4,...,36} = blacks in roulette {A,G} = purines in i-th position of a nucleotide seq {A,I,L,F,V,P,G} = hydrophobic amino acids A: Alanine - Ala I: Isoleucine - Ile L: Leucine - Leu F: Phenylalanine - Phe V: Valine - Val P: Proline - Pro G: Glycine - Gly

5 P(A) denotes prob of event A P(A) can be approximated by relative frequency #times A occurs in N independent experiments N

6 Law of large numbers In the limit as N approaches infinity, the relative frequency of occurrence of event A equals the probability P(A) Flip a coin 1000 times. The probability of heads is approximated by number of heads divided by 1000.

7 Histogram of relative frequency of number of times a 1 was rolled in 1000 die rolls, repeated 10,000 times.

8 Counting If each simple event has equal probability (uniform distribution), then probability P(A) equals # simple events in A / size of sample space

9

10

11

12

13

14 Answer 1-26/54 = For events (or sets) A,B whose intersection is non-empty, we do NOT double count the items in the intersection. Thus answer is P(A union B) and NOT P(A)+P(B) The addition rule is ONLY valid if events (sets) are disjoint. If events not disjoint, then rule is P(A)+P(B)-P(A Å B). We ll often write P(A Å B) instead as P(A,B).

15 Sampling: selection with and without replacement

16 Independent Events

17 Conditional probability and independent Events Conditional probability P(A B) defined by P(A B) = P(A,B)/P(B) Events A,B µ Ω are independent if P(A,B) = P(A) P(B) Equivalently, A,B are independent if P(A) = P(A B) = P(A,B)/P(B)

18 Intersection of sets

19 Union of sets

20 Set difference

21 A,B,C are events, hence subsets of sample space Since A and B are subsets of the sample space, their intersection is denoted by A B. However, in probability theory, the intersection of events A and B Is usually denoted by A,B or less commonly by AB (not multiplication!). The probability that events A and B simultaneously occur is called the joint probability P(A,B).

22 Venn Diagrams The sample space, Ω, is also called the universe, domain of discourse, etc. and is represented by a large rectangle. Events A µ Ω are represented by circles within Ω, and P(A)= A /Ω Conditional probability P(A B) is visually represented by considering the universe to be B, rather than Ω.

23 Simple form of Bayes

24 Contingency Table

25

26

27 Bayes theorem Bayes theorem allows one to reverse causality. If we know probability P(A) and we know conditional probability P(B A) then we can compute P(A B). This is used to compute the probability of a model L(Model Data) given knowledge of P(Data Model) and the prior probability P(Model) of a model

28 Application of Bayes rule Sally (blindfolded) draws a ball randomly from one of two urns: urn 1: 5 red balls and 5 black balls urn 2: 9 red balls and 1 black ball Sally draws a red ball. What is the probability that the ball comes from urn 2?

29 Easy solution using contingency table P(urn2 R) = P(urn2,R)/P(R) = (9/20) / (14/20) = 9/14=0.6429

30 Computation P( red urn 1) = 0.5 P( red urn 2) = 0.9 P( urn2 red) = P(urn2, red)/p(red) = P(red urn2)*p(urn2)/p(red) = 0.9*0.5/P(red) = 0.45/0.7 = To compute P(red), use total prob form P(red) = P(red urn1)p(urn1) + P(red urn2)p(urn2) P(red) = 0.5* *0.5 = 0.7

31 Prior and posterior probabilities prior probability: probability (estimate) prior to an experiment. For instance, prior probability of urn2 before Sally draws a ball, P(urn2) = 0.5 posterior probability: revised probability (estimate) after performing an experiment. For instance, posterior probability of urn2 after Sally draws red ball, P(urn2 red) = 0.7

32

33 Answer Prob that 4 randomly selected persons have same birthday on Jan 1 is 1/ Similarly for Jan 2 and all 365 days. Thus prob that 4 randomly selected persons have same birthday is 365 1/365 4 = 1/365 3 =

34

35 Answer (With replacement): (89/979) 2 = (Without replacement): (89 88)/( )

36

37 Answer P( RB 40) = P(RB,40)/P(40). Now P(RB,40) = 30/( ) and P(40) = 85/( ), so answer is 30/85 Using table, what is P(40 RB)? Using Bayes, what is P(40 RB)?

38 Mortality rate

39 Mortality rate, continued

40 Fertility rate

41

42 Answer Neonatal: 5000 Fetal deaths: 33,500 Live births: 4,052,000 perinatal mortality rate is thus

43

44

45 Answer

46 Some simple counting problems

47

48 Answer 26 letters, 10 digits number of good configurations: 26*10 number of all configurations: (26*10) 3 ratio of good/all is 1/260 2

49 Birthday paradox In a room of 23 persons, what is the probability that 2 persons have the same birthday?

50 Birthday paradox Question: In a room of 23 persons, what is the probability that 2 persons have the same birthday? Answer: (365-0)/365 * (365-1)/365 *... * (365-22)/365 = Use complement rule: P(at least 2 persons with same birthday) = 1 - P(no 2 persons have same birthday) = = > 1/2

51 Permutations and combinations Number of ordered k-tuples of distinct elements drawn from set of n elements is npk, defined to be n*(n-1)*...*(n-(k-1)), consisting of k factors Number of unordered k-tuples of distinct elements drawn from set of n elements is nck, defined to be number npk/ k! Here 0! = 1 and for k>0, k! = k*(k-1)*...*1

52

53 Answer

54

55

56 Risk Absolute risk reduction P(event occurs in treatment group) - P(event occurs in control group) Relative risk (risk ratio) P(event occurs in treatment group) P(event occurs in control group)

57 Number to treat Number needed to treat equals absolute risk reduction

58 Disease No Disease Treatment a b No treatment c d

59 Absolute & relative risk reduction absolute risk reduction a/(a+b) - c/(c+d) relative risk reduction (a/a+b) / (c/(c+d)

60 Odds Odds against event A: P(not A)/P(A) Odds in favor of event A: P(A)/P(not A) Odds ratio (OR) = (a/b)/(c/d) odds in favor of event for treatment odds in favor of event for control

61

62 Answer biker rate: 0.2 nonbiker rate: 0.8 odds against A is ratio of P(not A)/P(A) = 0.8/0.2 = 4 to 1

63 Card counting problems 5-card poker hands

64 Flush Probability of a flush (5 cards, all same suit). which is , or about a 2 in 1000 chance.

65 Straight Probability of a straight (5 cards in order, ace high or low, suit does not matter). which is , or about a 4 in 1000 chance.

66 Probability of a straight (5 cards in consecutive order, suit does not matter, ace counts as low )

67 Note that the numerator of the first expression counts the number of straights (ace low), where the player has sorted the cards in increasing order: choose starting card among 1,2,...,9 (36 possibilities since 4 suits), then 4 choices for each successive card (since suit does not matter).

68 The denominator of the first expression is the number of unordered hands in a deck of 52 cards. Since 52 C 5 = (52 P 5)/5! we see that the results of first and second expression must be identical

69 Royal straight Probability of a straight of form 10,jack,queen,king,ace (5 cards in consecutive order beginning with 10, suit does not matter, ace counts as high )

70 Probability of straight (ace low or high) Probability of a straight (5 cards in consecutive order, suit does not matter, ace counts either low or high) which equals or , around 4 in 1000 chance.

71 Straight flush Probability of a straight flush (5 cards in consecutive order with same suit, ace counts as low or high ) which equals or around a one in 10,000 chance.

72 Problem of finding the right key to open the door A woman is given n keys, of which only one fits the front door. She randomly tries the keys successively (sampling without replacement) until she can open the front door. This procedure may require 1,2,...,n trials. Prove that each of these n outcomes has probability 1/n.

73 Sketch of solution Define the events A1,A2,...,An as follows: A1: first key fits A2: first key does not fit, second key fits A3: first two keys do not fit, third key fits etc. An: first n-1 keys do not fit, nth key fits

74 Clearly P(A1) = 1/n P(A2) = (n-1)/n x 1/(n-1) = 1/m P(A3) = (n-1)/n x (n-2)/(n-1) x 1/(n-2) = 1/n Etc.

75 Coin tossing problem

76 Coin tossing problem

77 Solution

78

79

80 Acceptance sampling

81 Solution of problem on acceptance sampling General procedure: select sample of size k out of n reject lot if any items in sample defective 3% of 5000 blood monitors defective. Find prob of rejecting batch when selecting 10 w/o replacement

82 HIV test accuracy

83 Solution of problem on HIV test accuracy Given facts from problem: HIV test is 95% accurate 10% of high risk group is HIV positive X tested positively. What is prob that X has HIV? X has HIV. What is prob that X tested positively?

84 Interpretation of test accuracy true positive (TP): tests positively, has disease false positive (FP): tests positively, does not have disease true negative (TN): tests negatively, does not have disease false positive (FN): tests negatively, has disease

85 Medical test definitions accuracy: probability of being correct: P(correct) (TP + TN)/(TP + FP + TN + FN) sensitivity (true positive rate): conditional prob of correct positive prediction P(TP pos) TP /(TP + FN) = TP / positives specificity (true negative rate): conditional prob of correct negative prediction P(TN neg) TN/(TN + FP) = TN / negatives positive predictive value (PPV): TP /(TP + FP) = TP/ predicted positives

86 Solution to HIV problem Assume that 95% accuracy means that sensitivity and specificity are 95% Hence P( pos test HIV ) = 0.95 Use Bayes to compute P( HIV pos test) P( pos test HIV)*P(HIV)/P(pos test) = (0.95)(0.1)/ P(pos test)

87 P(pos test) = P(pos test HIV)*P(HIV) + P(pos test not HIV)*P(not HIV) = (0.95*0.1)+(0.05*0.9) = 0.14 It follows that P(HIV pos test) = 0.679

88 Sickle cell disease According to the CDC (Center for Disease Control), SCD (sickle cell disease) affects approximately 100,000 Assuming Hardy- Weinberg equilibrium, what percentage of Americans are protected from malaria? (Assume that both heterozygotic and homozygotic carriers of the sickle-cell allele are protected from malaria.)

89 Solution

90 Multinomial coefficients

91 Scrabble tiles & Mississippi

92 Misspellings of Mississippi

93 Sample counting problems

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-351-01 Probability Winter 2011-2012 Contents 1 Axiomatic Probability 2 1.1 Outcomes and Events............................... 2 1.2 Rules of Probability................................

More information

Textbook: pp Chapter 2: Probability Concepts and Applications

Textbook: pp Chapter 2: Probability Concepts and Applications 1 Textbook: pp. 39-80 Chapter 2: Probability Concepts and Applications 2 Learning Objectives After completing this chapter, students will be able to: Understand the basic foundations of probability analysis.

More information

Sample Spaces, Events, Probability

Sample Spaces, Events, Probability Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

Compound Probability. Set Theory. Basic Definitions

Compound Probability. Set Theory. Basic Definitions Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic

More information

Probability. Ms. Weinstein Probability & Statistics

Probability. Ms. Weinstein Probability & Statistics Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

More information

Probability. Engr. Jeffrey T. Dellosa.

Probability. Engr. Jeffrey T. Dellosa. Probability Engr. Jeffrey T. Dellosa Email: jtdellosa@gmail.com Outline Probability 2.1 Sample Space 2.2 Events 2.3 Counting Sample Points 2.4 Probability of an Event 2.5 Additive Rules 2.6 Conditional

More information

CHAPTERS 14 & 15 PROBABILITY STAT 203

CHAPTERS 14 & 15 PROBABILITY STAT 203 CHAPTERS 14 & 15 PROBABILITY STAT 203 Where this fits in 2 Up to now, we ve mostly discussed how to handle data (descriptive statistics) and how to collect data. Regression has been the only form of statistical

More information

CS 237 Fall 2018, Homework SOLUTION

CS 237 Fall 2018, Homework SOLUTION 0//08 hw03.solution.lenka CS 37 Fall 08, Homework 03 -- SOLUTION Due date: PDF file due Thursday September 7th @ :59PM (0% off if up to 4 hours late) in GradeScope General Instructions Please complete

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

November 11, Chapter 8: Probability: The Mathematics of Chance

November 11, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39 CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information

STAT 3743: Probability and Statistics

STAT 3743: Probability and Statistics STAT 3743: Probability and Statistics G. Jay Kerns, Youngstown State University Fall 2010 Probability Random experiment: outcome not known in advance Sample space: set of all possible outcomes (S) Probability

More information

Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 4 Using Probability and Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Section Introduction to Sets

Section Introduction to Sets Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

More information

Today s Topics. Next week: Conditional Probability

Today s Topics. Next week: Conditional Probability Today s Topics 2 Last time: Combinations Permutations Group Assignment TODAY: Probability! Sample Spaces and Event Spaces Axioms of Probability Lots of Examples Next week: Conditional Probability Sets

More information

A Probability Work Sheet

A Probability Work Sheet A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we

More information

Chapter 1. Probability

Chapter 1. Probability Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

More information

Section : Combinations and Permutations

Section : Combinations and Permutations Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

More information

The probability set-up

The probability set-up CHAPTER The probability set-up.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

More information

Probability. Dr. Zhang Fordham Univ.

Probability. Dr. Zhang Fordham Univ. Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

More information

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.)

The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you $5 that if you give me $10, I ll give you $20.) The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you $ that if you give me $, I ll give you $2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If

More information

RANDOM EXPERIMENTS AND EVENTS

RANDOM EXPERIMENTS AND EVENTS Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

More information

Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation. The study of randomness Chapter 6: Probability and Simulation The study of randomness Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

November 8, Chapter 8: Probability: The Mathematics of Chance

November 8, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol

More information

Probability Review 41

Probability Review 41 Probability Review 41 For the following problems, give the probability to four decimals, or give a fraction, or if necessary, use scientific notation. Use P(A) = 1 - P(not A) 1) A coin is tossed 6 times.

More information

Introduction to Probability and Statistics I Lecture 7 and 8

Introduction to Probability and Statistics I Lecture 7 and 8 Introduction to Probability and Statistics I Lecture 7 and 8 Basic Probability and Counting Methods Computing theoretical probabilities:counting methods Great for gambling! Fun to compute! If outcomes

More information

Chapter 4 Student Lecture Notes 4-1

Chapter 4 Student Lecture Notes 4-1 Chapter 4 Student Lecture Notes 4-1 Basic Business Statistics (9 th Edition) Chapter 4 Basic Probability 2004 Prentice-Hall, Inc. Chap 4-1 Chapter Topics Basic Probability Concepts Sample spaces and events,

More information

3 The multiplication rule/miscellaneous counting problems

3 The multiplication rule/miscellaneous counting problems Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

More information

PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY. 1. Introduction. Candidates should able to: PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

More information

Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation. The study of randomness Chapter 6: Probability and Simulation The study of randomness 6.1 Randomness Probability describes the pattern of chance outcomes. Probability is the basis of inference Meaning, the pattern of chance outcomes

More information

Class XII Chapter 13 Probability Maths. Exercise 13.1

Class XII Chapter 13 Probability Maths. Exercise 13.1 Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

INDIAN STATISTICAL INSTITUTE

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE B1/BVR Probability Home Assignment 1 20-07-07 1. A poker hand means a set of five cards selected at random from usual deck of playing cards. (a) Find the probability that it

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 1 Probability Properties of probability Counting techniques 1 Chapter 1 Probability Probability Theorem P(φ)

More information

Grade 6 Math Circles Fall Oct 14/15 Probability

Grade 6 Math Circles Fall Oct 14/15 Probability 1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

More information

1MA01: Probability. Sinéad Ryan. November 12, 2013 TCD

1MA01: Probability. Sinéad Ryan. November 12, 2013 TCD 1MA01: Probability Sinéad Ryan TCD November 12, 2013 Definitions and Notation EVENT: a set possible outcomes of an experiment. Eg flipping a coin is the experiment, landing on heads is the event If an

More information

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events

CHAPTER 2 PROBABILITY. 2.1 Sample Space. 2.2 Events CHAPTER 2 PROBABILITY 2.1 Sample Space A probability model consists of the sample space and the way to assign probabilities. Sample space & sample point The sample space S, is the set of all possible outcomes

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by

More information

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following:

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 17 Introduction to Probability The topic for the third and final major portion of the course is Probability. We will aim to make sense of

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 Introduction to Discrete Probability In the last note we considered the probabilistic experiment where we flipped a

More information

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000.

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000. CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 15 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette wheels. Today

More information

Counting and Probability Math 2320

Counting and Probability Math 2320 Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A

More information

Counting & Basic probabilities. Stat 430 Heike Hofmann

Counting & Basic probabilities. Stat 430 Heike Hofmann Counting & Basic probabilities Stat 430 Heike Hofmann 1 Outline Combinatorics (Counting rules) Conditional probability Bayes rule 2 Combinatorics 3 Summation Principle Alternative Choices Start n1 ways

More information

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices

More information

Week 3 Classical Probability, Part I

Week 3 Classical Probability, Part I Week 3 Classical Probability, Part I Week 3 Objectives Proper understanding of common statistical practices such as confidence intervals and hypothesis testing requires some familiarity with probability

More information

Independent Events. 1. Given that the second baby is a girl, what is the. e.g. 2 The probability of bearing a boy baby is 2

Independent Events. 1. Given that the second baby is a girl, what is the. e.g. 2 The probability of bearing a boy baby is 2 Independent Events 7. Introduction Consider the following examples e.g. E throw a die twice A first thrown is "" second thrown is "" o find P( A) Solution: Since the occurrence of Udoes not dependu on

More information

3 The multiplication rule/miscellaneous counting problems

3 The multiplication rule/miscellaneous counting problems Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,

More information

Probability Concepts and Counting Rules

Probability Concepts and Counting Rules Probability Concepts and Counting Rules Chapter 4 McGraw-Hill/Irwin Dr. Ateq Ahmed Al-Ghamedi Department of Statistics P O Box 80203 King Abdulaziz University Jeddah 21589, Saudi Arabia ateq@kau.edu.sa

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 5: o Independence reviewed; Bayes' Rule o Counting principles and combinatorics; o Counting considered

More information

2.5 Sample Spaces Having Equally Likely Outcomes

2.5 Sample Spaces Having Equally Likely Outcomes Sample Spaces Having Equally Likely Outcomes 3 Sample Spaces Having Equally Likely Outcomes Recall that we had a simple example (fair dice) before on equally-likely sample spaces Since they will appear

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

Week 1: Probability models and counting

Week 1: Probability models and counting Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

More information

Introductory Probability

Introductory Probability Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

More information

Statistics Intermediate Probability

Statistics Intermediate Probability Session 6 oscardavid.barrerarodriguez@sciencespo.fr April 3, 2018 and Sampling from a Population Outline 1 The Monty Hall Paradox Some Concepts: Event Algebra Axioms and Things About that are True Counting

More information

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

More information

Combinatorics and Intuitive Probability

Combinatorics and Intuitive Probability Chapter Combinatorics and Intuitive Probability The simplest probabilistic scenario is perhaps one where the set of possible outcomes is finite and these outcomes are all equally likely. A subset of the

More information

Georgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6

Georgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6 How Odd? Standards Addressed in this Task MGSE9-12.S.CP.1 Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not). MGSE9-12.S.CP.7

More information

Probability and Counting Rules. Chapter 3

Probability and Counting Rules. Chapter 3 Probability and Counting Rules Chapter 3 Probability as a general concept can be defined as the chance of an event occurring. Many people are familiar with probability from observing or playing games of

More information

STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model

STAT 155 Introductory Statistics. Lecture 11: Randomness and Probability Model The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 11: Randomness and Probability Model 10/5/06 Lecture 11 1 The Monty Hall Problem Let s Make A Deal: a game show

More information

Chapter 3: Elements of Chance: Probability Methods

Chapter 3: Elements of Chance: Probability Methods Chapter 3: Elements of Chance: Methods Department of Mathematics Izmir University of Economics Week 3-4 2014-2015 Introduction In this chapter we will focus on the definitions of random experiment, outcome,

More information

Such a description is the basis for a probability model. Here is the basic vocabulary we use.

Such a description is the basis for a probability model. Here is the basic vocabulary we use. 5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

More information

Elementary Statistics. Basic Probability & Odds

Elementary Statistics. Basic Probability & Odds Basic Probability & Odds What is a Probability? Probability is a branch of mathematics that deals with calculating the likelihood of a given event to happen or not, which is expressed as a number between

More information

Probability I Sample spaces, outcomes, and events.

Probability I Sample spaces, outcomes, and events. Probability I Sample spaces, outcomes, and events. When we perform an experiment, the result is called the outcome. The set of possible outcomes is the sample space and any subset of the sample space is

More information

Discrete Structures Lecture Permutations and Combinations

Discrete Structures Lecture Permutations and Combinations Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

More information

Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

More information

STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model

STOR 155 Introductory Statistics. Lecture 10: Randomness and Probability Model The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics Lecture 10: Randomness and Probability Model 10/6/09 Lecture 10 1 The Monty Hall Problem Let s Make A Deal: a game show

More information

Probability: Terminology and Examples Spring January 1, / 22

Probability: Terminology and Examples Spring January 1, / 22 Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A one-pair

More information

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

More information

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions)

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) CSE 31: Foundations of Computing II Quiz Section #: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n

More information

Chapter 4: Probability

Chapter 4: Probability Student Outcomes for this Chapter Section 4.1: Contingency Tables Students will be able to: Relate Venn diagrams and contingency tables Calculate percentages from a contingency table Calculate and empirical

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules

More information

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E. Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

More information

CSC/MATA67 Tutorial, Week 12

CSC/MATA67 Tutorial, Week 12 CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly

More information

Basic Probability Models. Ping-Shou Zhong

Basic Probability Models. Ping-Shou Zhong asic Probability Models Ping-Shou Zhong 1 Deterministic model n experiment that results in the same outcome for a given set of conditions Examples: law of gravity 2 Probabilistic model The outcome of the

More information

Sets. Definition A set is an unordered collection of objects called elements or members of the set.

Sets. Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples:

More information

Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

More information

2. Combinatorics: the systematic study of counting. The Basic Principle of Counting (BPC)

2. Combinatorics: the systematic study of counting. The Basic Principle of Counting (BPC) 2. Combinatorics: the systematic study of counting The Basic Principle of Counting (BPC) Suppose r experiments will be performed. The 1st has n 1 possible outcomes, for each of these outcomes there are

More information

Probability - Chapter 4

Probability - Chapter 4 Probability - Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

"Well, statistically speaking, you are for more likely to have an accident at an intersection, so I just make sure that I spend less time there.

Well, statistically speaking, you are for more likely to have an accident at an intersection, so I just make sure that I spend less time there. 6.2 Probability Models There was a statistician who, when driving his car, would always accelerate hard before coming to an intersection, whiz straight through it, and slow down again once he was beyond

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Review Questions Multiple Choice Questions for Review 1. Suppose there are 12 students, among whom are three students, M, B, C (a Math Major, a Biology Major, a Computer Science Major. We want to send

More information

When a number cube is rolled once, the possible numbers that could show face up are

When a number cube is rolled once, the possible numbers that could show face up are C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that

More information

Raise your hand if you rode a bus within the past month. Record the number of raised hands.

Raise your hand if you rode a bus within the past month. Record the number of raised hands. 166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

More information

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

More information

CHAPTER 7 Probability

CHAPTER 7 Probability CHAPTER 7 Probability 7.1. Sets A set is a well-defined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can

More information

Discrete Random Variables Day 1

Discrete Random Variables Day 1 Discrete Random Variables Day 1 What is a Random Variable? Every probability problem is equivalent to drawing something from a bag (perhaps more than once) Like Flipping a coin 3 times is equivalent to

More information

Tree and Venn Diagrams

Tree and Venn Diagrams OpenStax-CNX module: m46944 1 Tree and Venn Diagrams OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Sometimes, when the probability

More information

Skills we've learned. Skills we need. 7 3 Independent and Dependent Events. March 17, Alg2 Notes 7.3.notebook

Skills we've learned. Skills we need. 7 3 Independent and Dependent Events. March 17, Alg2 Notes 7.3.notebook 7 3 Independent and Dependent Events Skills we've learned 1. In a box of 25 switches, 3 are defective. What is the probability of randomly selecting a switch that is not defective? 2. There are 12 E s

More information

Lecture 6 Probability

Lecture 6 Probability Lecture 6 Probability Example: When you toss a coin, there are only two possible outcomes, heads and tails. What if we toss a coin two times? Figure below shows the results of tossing a coin 5000 times

More information

5 Elementary Probability Theory

5 Elementary Probability Theory 5 Elementary Probability Theory 5.1 What is Probability? The Basics We begin by defining some terms. Random Experiment: any activity with a random (unpredictable) result that can be measured. Trial: one

More information