Chinese Remainder. Discrete Mathematics Andrei Bulatov

Size: px
Start display at page:

Download "Chinese Remainder. Discrete Mathematics Andrei Bulatov"

Transcription

1 Chnese Remander Introducton Theorem Dscrete Mathematcs Andre Bulatov

2 Dscrete Mathematcs Chnese Remander Theorem 34-2 Prevous Lecture Resdues and arthmetc operatons Caesar cpher Pseudorandom generators Inverse resdue Dvsors of 0

3 Dscrete Mathematcs Modular Arthmetc II 33-3 Lnear Congruences A congruence of the form ax b (mod m) where m s a postve nteger, a and b are ntegers, and x s a varable, s called a lnear congruence. We wll solve lnear congruences If a s relatvely prme wth m, then t has the nverse. Then 1 a a 1 1 a ax b (mod m) x b (mod m) Fnd the nverse of 3 modulo 7 Solve the lnear congruence 3x 4 (mod 7) a 1

4 Dscrete Mathematcs Chnese Remander Theorem 34-4 The Chnese Remander Theorem A lnear congruence s smlar to a sngle lnear equaton. What about systems of equatons (Sun Tzu s puzzle, BC): There are certan thngs whose number s unknown. When dvded by 3, the remander s 2; when dvded by 5, the remander s 3; and when dvded by 7, the remander s 2. What wll be the number of thngs? Ths can be translated nto the followng queston: What are the solutons of the system of congruences x 2 (mod 3) x 3 (mod 5) x 2 (mod 7)

5 Dscrete Mathematcs Chnese Remander Theorem 34-5 The Chnese Remander Theorem (cntd) Theorem Let m1,m2, K, mk be parwse relatvely prme postve ntegers and a,a, K, arbtrary ntegers. Then the system 1 2 ak x a1 x a2 M x a k (mod m 1) (mod m ) (mod m has a unque soluton modulo m = m1 m2 K mk. (That s, there s a soluton x wth 0 x < m, and all other solutons are congruent modulo m to ths soluton.) 2 k )

6 Dscrete Mathematcs Chnese Remander Theorem 34-6 The Chnese Remander Theorem (cntd) Proof. We construct a soluton to ths system Set M = m for = 1,2,,k. Thus M s the product of all the m modul except for Snce m and m are relatvely prme when j, Therefore M has the nverse modulo m, that s y such that Let us set m j M y 1(mod Note that M j 0 (mod m ) whenever j, all terms except for the th term n ths sum are congruent to 0 modulo m. As My 1(mod m) we have x a M y a (mod m ) m ) 1M1y 1 + a2m2y2 + akmkyk x = a L+ gcd ( M,m ) 1 =

7 Dscrete Mathematcs Chnese Remander Theorem 34-7 Sun Tzu s Puzzle x 2 (mod 3) x 3 (mod 5) x 2 (mod 7)

8 Dscrete Mathematcs Chnese Remander Theorem 34-8 Fermat s Theorem Fermat s Great (Last) Theorem. n n For any n > 2, the equaton x + y = does not have nteger solutons x,y,z > 0 z n It had remaned unproven for 358 years (posed n 1637, proved n 1995) Andrew Wles proved t n 1995

9 Dscrete Mathematcs Chnese Remander Theorem 34-9 Fermat s Lttle Theorem Fermat s Lttle Theorem. If p s prme and a s an nteger not dvsble by p, then a p 1 1 (mod p) Clearly, t suffces to consder only resdues modulo p. Z

10 Dscrete Mathematcs Chnese Remander Theorem Fermat s Lttle Theorem (cntd) Fermat s Lttle Theorem was mproved by Euler Fermat s Lttle Theorem mproved For any ntegers m and a such that they are relatvely prme ϕ a (m) 1 (mod m) where φ(m) denotes the Euler totent functon, the number of numbers 0 < k < m relatvely prme wth m Example: Z 8

11 Dscrete Mathematcs Publc Key Cryptography Publc Key Cryptography Earler we consdered Caesar cpher. To encrypt and decrypt messages usng ths cpher one needs to know the key Caesar cpher uses the same key for encrypton and decrypton; t s secret, and f one knows the key he knows everythng. Publc key cryptosystems use a dfferent approach Such a system uses dfferent keys for encrypton and decrypton: Every person has a key for encrypton, and can wrte an encrypted message But ths does not help to decrypt the message

12 Dscrete Mathematcs Publc Key Cryptography RSA Cryptosystem RSA stands for the names of the nventors: Rvest, Shamr, Adleman From left to rght: Ron Rvest Ad Shamr Len Adleman RSA key: a modulus n = pq, where p and q are large prme numbers (current standards are 128, 256, or 512 dgts each), n s publc whle p and q are secret, and an exponent e relatvely prme wth (p 1)(q 1)

13 Dscrete Mathematcs Publc Key Cryptography RSA Encrypton In the RSA method, messages are translated nto an nteger (a short message) or a sequence of ntegers Let M be the plantext (the orgnal message). Then the cphertext s the resdue e C M (mod n) Example. Encrypt the message STOP usng the RSA cryptosystem wth p = 43 and q = 59, so that n = = 2537, and wth e = 13. Note that gcd(e, (p 1)(q 1)) = gcd(13, 42 58) = 1 Soluton. Translate the letters of STOP nto ther numercal equvalents and group them nto groups of four: Encrypt them usng C M (mod 2537). We get (mod 2537) and (mod 2537) Thus, the encrypted message s

14 Dscrete Mathematcs Publc Key Cryptography RSA Decrypton The decrypton key d s the nverse of e modulo (p 1)(q 1). It s secret! Snce gcd(e, (p 1)(q 1)) = 1, the nverse exsts. Indeed, de 1 (mod (p 1)(q 1)), therefore there s k such that de = 1 + k(p 1)(q 1). Hence d e d de 1+ k(p 1)(q 1) C (M ) M M (mod n) Note that φ(n) = n = (p 1)(q 1) p q k(p 1)(q 1) ϕ(n) k By Fermat s Lttle Theorem, M = (M ) 1 (mod n) Hence, C M M Thus C d M (mod d k(p 1)(q 1) n) M (mod n)

15 Dscrete Mathematcs Publc Key Cryptography Example We receve the encrypted message What s the plantext f t was encrypted usng the RSA cpher from the prevous example. Soluton The encrypton keys were n = and e = 13. It s not hard to see that d = 937 s the nverse of 13 modulo = Therefore to decrypt a cpher block C, we compute 937 P C (mod n) In our case we have (mod 2537) and Thus the plantext s , that s HELP (mod 2537)

16 Dscrete Mathematcs Publc Key Cryptography Why RSA Works The secrecy comes from the fact that t s ncredbly dffcult to fnd an nverse modulo a bg number f we do not know t. And we do not know (p 1)(q 1), as we do not know the prme decomposton of n = pq. However, t s also very dffcult to fnd a prme decomposton of a number f ts prme factors are bg. The most effcent factorzaton method known requres bllons of years of work of the fastest computers to factorze a 400-dgt number. We need n to be the product of 2 prme numbers, because the method works only f the message s relatvely prme wth n. Thus n needs to have very few dvsors.

17 Dscrete Mathematcs Chnese Remander Theorem Homework Exercses from the Book: No. 1, 5, 9, 12, 20, 23 (page 696)

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete

More information

Secure Transmission of Sensitive data using multiple channels

Secure Transmission of Sensitive data using multiple channels Secure Transmsson of Senstve data usng multple channels Ahmed A. Belal, Ph.D. Department of computer scence and automatc control Faculty of Engneerng Unversty of Alexandra Alexandra, Egypt. aabelal@hotmal.com

More information

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator.

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator. Lecture 32 Instructor s Comments: This is a make up lecture. You can choose to cover many extra problems if you wish or head towards cryptography. I will probably include the square and multiply algorithm

More information

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Chapter 0: Introduction Number Theory enjoys a very long history in short, number theory is a study of integers. Mathematicians over

More information

L29&30 - RSA Cryptography

L29&30 - RSA Cryptography L29&30 - RSA Cryptography CSci/Math 2112 20&22 July 2015 1 / 13 Notation We write a mod n for the integer b such that 0 b < n and a b (mod n). 2 / 13 Calculating Large Powers Modulo n Example 1 What is

More information

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence.

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence. Section 4.4 Linear Congruences Definition: A congruence of the form ax b (mod m), where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence. The solutions

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

CHAPTER 2. Modular Arithmetic

CHAPTER 2. Modular Arithmetic CHAPTER 2 Modular Arithmetic In studying the integers we have seen that is useful to write a = qb + r. Often we can solve problems by considering only the remainder, r. This throws away some of the information,

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic and the RSA Public Key Cryptosystem Jeremy R. Johnson 1 Introduction Objective: To understand what a public key cryptosystem is and

More information

Review: Our Approach 2. CSC310 Information Theory

Review: Our Approach 2. CSC310 Information Theory CSC30 Informaton Theory Sam Rowes Lecture 3: Provng the Kraft-McMllan Inequaltes September 8, 6 Revew: Our Approach The study of both compresson and transmsson requres that we abstract data and messages

More information

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m.

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m. Great Theoretical Ideas In Computer Science Steven Rudich CS - Spring Lecture Feb, Carnegie Mellon University Modular Arithmetic and the RSA Cryptosystem p- p MAX(a,b) + MIN(a,b) = a+b n m means that m

More information

Cryptography, Number Theory, and RSA

Cryptography, Number Theory, and RSA Cryptography, Number Theory, and RSA Joan Boyar, IMADA, University of Southern Denmark November 2015 Outline Symmetric key cryptography Public key cryptography Introduction to number theory RSA Modular

More information

Number Theory/Cryptography (part 1 of CSC 282)

Number Theory/Cryptography (part 1 of CSC 282) Number Theory/Cryptography (part 1 of CSC 282) http://www.cs.rochester.edu/~stefanko/teaching/11cs282 1 Schedule The homework is due Sep 8 Graded homework will be available at noon Sep 9, noon. EXAM #1

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

MA/CSSE 473 Day 9. The algorithm (modified) N 1

MA/CSSE 473 Day 9. The algorithm (modified) N 1 MA/CSSE 473 Day 9 Primality Testing Encryption Intro The algorithm (modified) To test N for primality Pick positive integers a 1, a 2,, a k < N at random For each a i, check for a N 1 i 1 (mod N) Use the

More information

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties.

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. LECTURE 3: CONGRUENCES 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. Definition 1.1. Suppose that a, b Z and m N. We say that a is congruent to

More information

Efficient Large Integers Arithmetic by Adopting Squaring and Complement Recoding Techniques

Efficient Large Integers Arithmetic by Adopting Squaring and Complement Recoding Techniques The th Worshop on Combnatoral Mathematcs and Computaton Theory Effcent Large Integers Arthmetc by Adoptng Squarng and Complement Recodng Technques Cha-Long Wu*, Der-Chyuan Lou, and Te-Jen Chang *Department

More information

Public Key Encryption

Public Key Encryption Math 210 Jerry L. Kazdan Public Key Encryption The essence of this procedure is that as far as we currently know, it is difficult to factor a number that is the product of two primes each having many,

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic 1 Integers modulo n 1.1 Preliminaries Introduction to Modular Arithmetic Definition 1.1.1 (Equivalence relation). Let R be a relation on the set A. Recall that a relation R is a subset of the cartesian

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

A Lower Bound for τ(n) of Any k-perfect Numbers

A Lower Bound for τ(n) of Any k-perfect Numbers Pure Mathematcal Scences, Vol. 4, 205, no. 3, 99-03 HIKARI Ltd, www.m-har.com http://dx.do.org/0.2988/pms.205.4923 A Lower Bound for τn of Any -Perfect Numbers Keneth Adran P. Dagal Department of Mathematcs

More information

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained.

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained. THE CHINESE REMAINDER THEOREM INTRODUCED IN A GENERAL KONTEXT Introduction The rst Chinese problem in indeterminate analysis is encountered in a book written by the Chinese mathematician Sun Tzi. The problem

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013 MODULE: (Title & Code) CA642 Cryptography and Number Theory COURSE: M.Sc. in Security and Forensic Computing YEAR: 1 EXAMINERS: (Including Telephone

More information

The number theory behind cryptography

The number theory behind cryptography The University of Vermont May 16, 2017 What is cryptography? Cryptography is the practice and study of techniques for secure communication in the presence of adverse third parties. What is cryptography?

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method Exercises Exercises 1. Show that 15 is an inverse of 7 modulo 26. 2. Show that 937 is an inverse of 13 modulo 2436. 3. By inspection (as discussed prior to Example 1), find an inverse of 4 modulo 9. 4.

More information

Test 2. ECON3161, Game Theory. Tuesday, November 6 th

Test 2. ECON3161, Game Theory. Tuesday, November 6 th Test 2 ECON36, Game Theory Tuesday, November 6 th Drectons: Answer each queston completely. If you cannot determne the answer, explanng how you would arrve at the answer may earn you some ponts.. (20 ponts)

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

On a remark of Makowski about perfect numbers

On a remark of Makowski about perfect numbers Elem. Math. 65 (2010) 121 126 0013-6018/10/030121-6 DOI 10.4171/EM/149 c Swss Mathematcal Socety, 2010 Elemente der Mathematk On a remark of Makowsk about perfect numbers Lus H. Gallardo Lus H. Gallardo

More information

Exam 1 7 = = 49 2 ( ) = = 7 ( ) =

Exam 1 7 = = 49 2 ( ) = = 7 ( ) = Exam 1 Problem 1. a) Define gcd(a, b). Using Euclid s algorithm comute gcd(889, 168). Then find x, y Z such that gcd(889, 168) = x 889 + y 168 (check your answer!). b) Let a be an integer. Prove that gcd(3a

More information

EE 418 Network Security and Cryptography Lecture #3

EE 418 Network Security and Cryptography Lecture #3 EE 418 Network Security and Cryptography Lecture #3 October 6, 2016 Classical cryptosystems. Lecture notes prepared by Professor Radha Poovendran. Tamara Bonaci Department of Electrical Engineering University

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

EE 418: Network Security and Cryptography

EE 418: Network Security and Cryptography EE 418: Network Security and Cryptography Homework 3 Solutions Assigned: Wednesday, November 2, 2016, Due: Thursday, November 10, 2016 Instructor: Tamara Bonaci Department of Electrical Engineering University

More information

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 7 Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Cryptography studies techniques for secure communication in the presence of third parties. A typical

More information

Wilson s Theorem and Fermat s Theorem

Wilson s Theorem and Fermat s Theorem Wilson s Theorem and Fermat s Theorem 7-27-2006 Wilson s theorem says that p is prime if and only if (p 1)! = 1 (mod p). Fermat s theorem says that if p is prime and p a, then a p 1 = 1 (mod p). Wilson

More information

problems palette of David Rock and Mary K. Porter 6. A local musician comes to your school to give a performance

problems palette of David Rock and Mary K. Porter 6. A local musician comes to your school to give a performance palette of problems Davd Rock and Mary K. Porter 1. If n represents an nteger, whch of the followng expressons yelds the greatest value? n,, n, n, n n. A 60-watt lghtbulb s used for 95 hours before t burns

More information

Understanding the Spike Algorithm

Understanding the Spike Algorithm Understandng the Spke Algorthm Vctor Ejkhout and Robert van de Gejn May, ntroducton The parallel soluton of lnear systems has a long hstory, spannng both drect and teratve methods Whle drect methods exst

More information

EE 508 Lecture 6. Degrees of Freedom The Approximation Problem

EE 508 Lecture 6. Degrees of Freedom The Approximation Problem EE 508 Lecture 6 Degrees of Freedom The Approxmaton Problem Revew from Last Tme Desgn Strategy Theorem: A crcut wth transfer functon T(s) can be obtaned from a crcut wth normalzed transfer functon T n

More information

Number Theory. Konkreetne Matemaatika

Number Theory. Konkreetne Matemaatika ITT9131 Number Theory Konkreetne Matemaatika Chapter Four Divisibility Primes Prime examples Factorial Factors Relative primality `MOD': the Congruence Relation Independent Residues Additional Applications

More information

Primitive Roots. Chapter Orders and Primitive Roots

Primitive Roots. Chapter Orders and Primitive Roots Chapter 5 Primitive Roots The name primitive root applies to a number a whose powers can be used to represent a reduced residue system modulo n. Primitive roots are therefore generators in that sense,

More information

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers);

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers); 18.310 lecture notes September 2, 2013 Cryptography Lecturer: Michel Goemans 1 Public Key Cryptosystems In these notes, we will be concerned with constructing secret codes. A sender would like to encrypt

More information

Diffie-Hellman key-exchange protocol

Diffie-Hellman key-exchange protocol Diffie-Hellman key-exchange protocol This protocol allows two users to choose a common secret key, for DES or AES, say, while communicating over an insecure channel (with eavesdroppers). The two users

More information

Application: Public Key Cryptography. Public Key Cryptography

Application: Public Key Cryptography. Public Key Cryptography Application: Public Key Cryptography Suppose I wanted people to send me secret messages by snail mail Method 0. I send a padlock, that only I have the key to, to everyone who might want to send me a message.

More information

1 Introduction to Cryptology

1 Introduction to Cryptology U R a Scientist (CWSF-ESPC 2017) Mathematics and Cryptology Patrick Maidorn and Michael Kozdron (Department of Mathematics & Statistics) 1 Introduction to Cryptology While the phrase making and breaking

More information

A Digital Content Distribution Using a Group-Key and Multi-layered Structure Based on Web

A Digital Content Distribution Using a Group-Key and Multi-layered Structure Based on Web A Dgtal Content Dstrbuton Usng a Group-Key and Mult-layered Structure Based on Web Yun-J Na and Il Seo Ko 2 Department of Internet Software, Honam Unversty 59-, Seobong-Dong, Gwangsan-Gu, Gwangju 506-74,

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

29. Network Functions for Circuits Containing Op Amps

29. Network Functions for Circuits Containing Op Amps 9. Network Functons for Crcuts Contanng Op Amps Introducton Each of the crcuts n ths problem set contans at least one op amp. Also each crcut s represented by a gven network functon. These problems can

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #2: practice MATH 311 Intro to Number Theory midterm: Thursday, Oct 20 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

Number Theory and Security in the Digital Age

Number Theory and Security in the Digital Age Number Theory and Security in the Digital Age Lola Thompson Ross Program July 21, 2010 Lola Thompson (Ross Program) Number Theory and Security in the Digital Age July 21, 2010 1 / 37 Introduction I have

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013/2014 MODULE: CA642/A Cryptography and Number Theory PROGRAMME(S): MSSF MCM ECSA ECSAO MSc in Security & Forensic Computing M.Sc. in Computing Study

More information

MAT Modular arithmetic and number theory. Modular arithmetic

MAT Modular arithmetic and number theory. Modular arithmetic Modular arithmetic 1 Modular arithmetic may seem like a new and strange concept at first The aim of these notes is to describe it in several different ways, in the hope that you will find at least one

More information

Walsh Function Based Synthesis Method of PWM Pattern for Full-Bridge Inverter

Walsh Function Based Synthesis Method of PWM Pattern for Full-Bridge Inverter Walsh Functon Based Synthess Method of PWM Pattern for Full-Brdge Inverter Sej Kondo and Krt Choesa Nagaoka Unversty of Technology 63-, Kamtomoka-cho, Nagaoka 9-, JAPAN Fax: +8-58-7-95, Phone: +8-58-7-957

More information

Algorithms Airline Scheduling. Airline Scheduling. Design and Analysis of Algorithms Andrei Bulatov

Algorithms Airline Scheduling. Airline Scheduling. Design and Analysis of Algorithms Andrei Bulatov Algorthms Arlne Schedulng Arlne Schedulng Desgn and Analyss of Algorthms Andre Bulatov Algorthms Arlne Schedulng 11-2 The Problem An arlne carrer wants to serve certan set of flghts Example: Boston (6

More information

communications are increasingly used in a way that they are scrambling and the combination of scrambling frequency and time domain.

communications are increasingly used in a way that they are scrambling and the combination of scrambling frequency and time domain. Journal of Advances n Computer Research Quarterly pissn: 2345-606x eissn: 2345-6078 Sar Branch, Islamc Azad Unversty, Sar, I.R.Iran (Vol. 7, No. 3, August 2016), Pages: 67-76 www.jacr.ausar.ac.r Audo Sgnal

More information

Target Response Adaptation for Correlation Filter Tracking

Target Response Adaptation for Correlation Filter Tracking Target Response Adaptaton for Correlaton Flter Tracng Adel Bb, Matthas Mueller, and Bernard Ghanem Image and Vdeo Understandng Laboratory IVUL, Kng Abdullah Unversty of Scence and Technology KAUST, Saud

More information

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson TITLE PAGE FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SEAT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense) INSTRUCTIONS TO STUDENTS: This is

More information

Xor. Isomorphisms. CS70: Lecture 9. Outline. Is public key crypto possible? Cryptography... Public key crypography.

Xor. Isomorphisms. CS70: Lecture 9. Outline. Is public key crypto possible? Cryptography... Public key crypography. CS70: Lecture 9. Outline. 1. Public Key Cryptography 2. RSA system 2.1 Efficiency: Repeated Squaring. 2.2 Correctness: Fermat s Theorem. 2.3 Construction. 3. Warnings. Cryptography... m = D(E(m,s),s) Alice

More information

Secure Power Scheduling Auction for Smart Grids Using Homomorphic Encryption

Secure Power Scheduling Auction for Smart Grids Using Homomorphic Encryption Secure Power Schedulng Aucton for Smart Grds Usng Homomorphc Encrypton Haya Shajaah, Student Member, IEEE, Ahmed Abdelhad, Senor Member, IEEE, and Charles Clancy, Senor Member, IEEE Abstract In ths paper,

More information

Foundations of Cryptography

Foundations of Cryptography Foundations of Cryptography Ville Junnila viljun@utu.fi Department of Mathematics and Statistics University of Turku 2015 Ville Junnila viljun@utu.fi Lecture 10 1 of 17 The order of a number (mod n) Definition

More information

University of British Columbia. Math 312, Midterm, 6th of June 2017

University of British Columbia. Math 312, Midterm, 6th of June 2017 University of British Columbia Math 312, Midterm, 6th of June 2017 Name (please be legible) Signature Student number Duration: 90 minutes INSTRUCTIONS This test has 7 problems for a total of 100 points.

More information

A Comparison of Two Equivalent Real Formulations for Complex-Valued Linear Systems Part 2: Results

A Comparison of Two Equivalent Real Formulations for Complex-Valued Linear Systems Part 2: Results AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 1 NO. () A Comparson of Two Equvalent Real Formulatons for Complex-Valued Lnear Systems Part : Results Abnta Munankarmy and Mchael A. Heroux Department of

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

To: Professor Avitabile Date: February 4, 2003 From: Mechanical Student Subject: Experiment #1 Numerical Methods Using Excel

To: Professor Avitabile Date: February 4, 2003 From: Mechanical Student Subject: Experiment #1 Numerical Methods Using Excel To: Professor Avtable Date: February 4, 3 From: Mechancal Student Subject:.3 Experment # Numercal Methods Usng Excel Introducton Mcrosoft Excel s a spreadsheet program that can be used for data analyss,

More information

Dynamic Optimization. Assignment 1. Sasanka Nagavalli January 29, 2013 Robotics Institute Carnegie Mellon University

Dynamic Optimization. Assignment 1. Sasanka Nagavalli January 29, 2013 Robotics Institute Carnegie Mellon University Dynamc Optmzaton Assgnment 1 Sasanka Nagavall snagaval@andrew.cmu.edu 16-745 January 29, 213 Robotcs Insttute Carnege Mellon Unversty Table of Contents 1. Problem and Approach... 1 2. Optmzaton wthout

More information

Problem Set 6 Solutions Math 158, Fall 2016

Problem Set 6 Solutions Math 158, Fall 2016 All exercise numbers from the textbook refer to the second edition. 1. (a) Textbook exercise 3.3 (this shows, as we mentioned in class, that RSA decryption always works when the modulus is a product of

More information

Revision of Lecture Twenty-One

Revision of Lecture Twenty-One Revson of Lecture Twenty-One FFT / IFFT most wdely found operatons n communcaton systems Important to know what are gong on nsde a FFT / IFFT algorthm Wth the ad of FFT / IFFT, ths lecture looks nto OFDM

More information

CS70: Lecture 8. Outline.

CS70: Lecture 8. Outline. CS70: Lecture 8. Outline. 1. Finish Up Extended Euclid. 2. Cryptography 3. Public Key Cryptography 4. RSA system 4.1 Efficiency: Repeated Squaring. 4.2 Correctness: Fermat s Theorem. 4.3 Construction.

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the Inverse

More information

Practice Midterm 2 Solutions

Practice Midterm 2 Solutions Practice Midterm 2 Solutions May 30, 2013 (1) We want to show that for any odd integer a coprime to 7, a 3 is congruent to 1 or 1 mod 7. In fact, we don t need the assumption that a is odd. By Fermat s

More information

Shunt Active Filters (SAF)

Shunt Active Filters (SAF) EN-TH05-/004 Martt Tuomanen (9) Shunt Actve Flters (SAF) Operaton prncple of a Shunt Actve Flter. Non-lnear loads lke Varable Speed Drves, Unnterrupted Power Supples and all knd of rectfers draw a non-snusodal

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic Jeremy R. Johnson 1 Introduction Objective: To become familiar with modular arithmetic and some key algorithmic constructions that

More information

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh Public-Key Cryptosystem Based on Composite Degree Residuosity Classes aka Paillier Cryptosystem Harmeet Singh Harmeet Singh Winter 2018 1 / 26 Background s Background Foundation of public-key encryption

More information

Implementation Complexity of Bit Permutation Instructions

Implementation Complexity of Bit Permutation Instructions Implementaton Complexty of Bt Permutaton Instructons Zhje Jerry Sh and Ruby B. Lee Department of Electrcal Engneerng, Prnceton Unversty, Prnceton, NJ 085 USA {zsh, rblee}@ee.prnceton.edu Abstract- Several

More information

MATH 13150: Freshman Seminar Unit 15

MATH 13150: Freshman Seminar Unit 15 MATH 1310: Freshman Seminar Unit 1 1. Powers in mod m arithmetic In this chapter, we ll learn an analogous result to Fermat s theorem. Fermat s theorem told us that if p is prime and p does not divide

More information

ECE315 / ECE515 Lecture 5 Date:

ECE315 / ECE515 Lecture 5 Date: Lecture 5 Date: 18.08.2016 Common Source Amplfer MOSFET Amplfer Dstorton Example 1 One Realstc CS Amplfer Crcut: C c1 : Couplng Capactor serves as perfect short crcut at all sgnal frequences whle blockng

More information

Number Theory and Public Key Cryptography Kathryn Sommers

Number Theory and Public Key Cryptography Kathryn Sommers Page!1 Math 409H Fall 2016 Texas A&M University Professor: David Larson Introduction Number Theory and Public Key Cryptography Kathryn Sommers Number theory is a very broad and encompassing subject. At

More information

Fall 2018 #11 Games and Nimbers. A. Game. 0.5 seconds, 64 megabytes

Fall 2018 #11 Games and Nimbers. A. Game. 0.5 seconds, 64 megabytes 5-95 Fall 08 # Games and Nmbers A. Game 0.5 seconds, 64 megabytes There s a legend n the IT Cty college. A student that faled to answer all questons on the game theory exam s gven one more chance by hs

More information

MA 111, Topic 2: Cryptography

MA 111, Topic 2: Cryptography MA 111, Topic 2: Cryptography Our next topic is something called Cryptography, the mathematics of making and breaking Codes! In the most general sense, Cryptography is the mathematical ideas behind changing

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Chapter 5: Cryptographic Algorithms Common Encryption Algorithms RSA

More information

1 GSW Multipath Channel Models

1 GSW Multipath Channel Models In the general case, the moble rado channel s pretty unpleasant: there are a lot of echoes dstortng the receved sgnal, and the mpulse response keeps changng. Fortunately, there are some smplfyng assumptons

More information

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers.

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively rime ositive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). c) Find the remainder of 1 008

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

A TABLE OF PISANO PERIOD LENGTHS

A TABLE OF PISANO PERIOD LENGTHS A TABLE OF PISANO PERIOD LENGTHS RICHARD J. MATHAR Abstract. A Psano perod s the perod of an nteger sequence whch s obtaned by reducng each term of a prmary sequence modulo some nteger m 1. Each prmary

More information

ALICE AND BOB GO TO DINNER: A VARIATION ON MÉNAGE

ALICE AND BOB GO TO DINNER: A VARIATION ON MÉNAGE #A72 INTEGERS 6 (26) ALIE AND BOB GO TO DINNER: A VARIATION ON MÉNAGE Vladmr Shevelev Department of Mathematcs, Ben-Guron Unversty of the Negev, Beer-Sheva, Israel shevelev@bgu.ac.l Peter J.. Moses Moparmatc

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

Security Enhancement and Speed Monitoring of RSA Algorithm

Security Enhancement and Speed Monitoring of RSA Algorithm Security Enhancement and Speed Monitoring of RSA Algorithm Sarthak R Patel 1, Prof. Khushbu Shah 2 1 PG Scholar, 2 Assistant Professor Computer Engineering Department, LJIET, Gujarat Technological University,

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CS 6750 Lecture 1 September 10, 2009 Riccardo Pucella Goals of Classical Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to all communications Alice

More information

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

MULTICORE IMPLEMENTATION OF THE AES ALGORITHM IN THE MEASUREMENT SYSTEM

MULTICORE IMPLEMENTATION OF THE AES ALGORITHM IN THE MEASUREMENT SYSTEM XIX IMEKO World Congress Fundamental and Appled Metrology September 6 11, 2009, Lsbon, Portugal MULTICORE IMPLEMENTATION OF THE AES ALGORITHM IN THE MEASUREMENT SYSTEM Potr Blsk 1,2, Wesław Wneck 2 1 Warsaw

More information

Cryptography Lecture 1: Remainders and Modular Arithmetic Spring 2014 Morgan Schreffler Office: POT 902

Cryptography Lecture 1: Remainders and Modular Arithmetic Spring 2014 Morgan Schreffler Office: POT 902 Cryptography Lecture 1: Remainders and Modular Arithmetic Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Topic Idea: Cryptography Our next topic is something called Cryptography,

More information

MTBF PREDICTION REPORT

MTBF PREDICTION REPORT MTBF PREDICTION REPORT PRODUCT NAME: BLE112-A-V2 Issued date: 01-23-2015 Rev:1.0 Copyrght@2015 Bluegga Technologes. All rghts reserved. 1 MTBF PREDICTION REPORT... 1 PRODUCT NAME: BLE112-A-V2... 1 1.0

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

4.3- Modeling the Diode Forward Characteristic

4.3- Modeling the Diode Forward Characteristic 2/8/2012 3_3 Modelng the ode Forward Characterstcs 1/3 4.3- Modelng the ode Forward Characterstc Readng Assgnment: pp. 179-188 How do we analyze crcuts wth juncton dodes? 2 ways: Exact Solutons ffcult!

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the

More information

Rejection of PSK Interference in DS-SS/PSK System Using Adaptive Transversal Filter with Conditional Response Recalculation

Rejection of PSK Interference in DS-SS/PSK System Using Adaptive Transversal Filter with Conditional Response Recalculation SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol., No., November 23, 3-9 Rejecton of PSK Interference n DS-SS/PSK System Usng Adaptve Transversal Flter wth Condtonal Response Recalculaton Zorca Nkolć, Bojan

More information