Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8"

Transcription

1 Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8 Name: A customer chooses 5 or 6 tapes from a bin of 40. What is the expression that gives the total number of possibilities? 2. A group of 4 journalists is to be chosen to cover a murder trial. There are 5 male and 7 female journalists available. How many possible groups can be formed, consisting of 2 men and 2 women? 3. As a promotion, a music store placed 12 tapes in one basket and 10 compact discs in another basket. The 1000 th customer to come through the store was allowed to select four tapes and four CD s. How many different selections could be made?

2 4. A hockey team has had a rough start to the season. The goal is to finish the preseason with as many wins as losses. The team has 20 preseason games and so far has 4 win and 8 losses. In how many ways can the team play the last eight games to finish with as many wins as losses? 5. A door to door salesperson visited 140 homes in a working day. Sixty of the people showed no interest in the product. Of the remainder of people, 30 bought something and 10 of those 30 customers bought more than $500 in merchandise. a. What is the probability that a potential customer will show some interest? b. What is the probability that a potential customer will buy something? c. If a potential customer initially shows some interest, what is the probability that $500 in merchandise will be bought? 6. Carl spent 30 min in a batting cage. The pitching machine delivered 180 balls in that time. Carl hit 102 of them but 30 were foul. a. What is the probability that Carl will hit any given pitch? b. What is the probability that Carl will have a fair hit on any given pitch? c. If Carl hits the ball, what is the probability that it will be fair?

3 7. Suppose you took a census at your school and found the following frequencies of blood types. Blood Type A B AB O Frequency If you chose five students at random, what would be the probability of each outcome? d. Finding five with type O e. Finding five with type B 8. A poll found that the probability that a student chosen at random had visited the arcade within the past week was 0.3. The probability that a student chosen at random played games on a home-based game machine was 0.5. The probability that a student did both was 0.2. What was the probability that a student played on an arcade machine or on a home-based machine? 9. One card is removed at random from a full deck. What is the probability of each event? a. Removing a spade b. Removing a face card or a heart 10. What is the probability of rolling a sum of 7 or 11 with one roll of two dice?

4 11. A census was taken of the students in a small rural high school. The students were asked if they were currently taking a course that used distance education technology. The results are summarized below. Yes No Female 8 14 Male 5 11 What is the probability that a male student in the school is taking a distance education course? 12. Four green marbles and six red marbles are in a bag. a. Find the probability of drawing a green marble and then a red marble, if the marbles are not replaced. b. Find the probability of drawing a green marble and then a red marble, if the marbles are replaced. 13. What is the probability of drawing a heart or a club from a deck of cards? 14. What is the probability of drawing a red card or a queen from a deck of cards?

5 15. In a school lottery, participants choose four numbers between 1 and 100. No number is repeated. What is the probability of guessing the winning numbers? 16. A line-up of seven suspects includes four criminals with outstanding arrest warrants. If the police randomly check for arrest records on four of the suspects, what is the probability of discovering the four wanted criminals? 17. Five cyclists line up for a race. What is the probability of correctly guessing the first-, second-, and third-place finishers in order? 18. A plumber is fixing a basin faucet and is reaching blindly in to a container for three compression fittings. The container holds four that will fit the pipe and two that are slightly too small. What is the probability that she will get three that will fit? 19. A class of 12 has 7 Maple Leaf fans and 5 Canadiens fans. Three tickets to a Leafs game are given away a random what is the probability that all the tickets will go to Leafs fans?

6 20. A scratch-and-win lottery ticket has 16 prize boxes. Under the boxes are four pictures of a videogame machine, five pictures of video-game software, and six pictures of movie tickets. Players scratch four boxes. If they scratch four identical pictures, they win the prize represented by the pictures. a. What is the probability of winning the video-game machine? b. What is the probability of winning any prize? 21. On Saturday, you went to Crazy Wally s Fair down the street. You play one of the games and win! Your prize is to pick two prizes out of a box. In the box are 20 chocolate bars, 2 mp3 players and 10 erasers. What is the probability of you getting an mp3 player and a chocolate bar? 22. A 13-card hand was dealt from a deck of 52 cards. What is the probability that a. there are no spades? b. there are 2 hearts, 3 diamonds, 5 spades and 3 clubs?

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11 Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

More information

Unit 9: Probability Assignments

Unit 9: Probability Assignments Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

More information

Conditional Probability Worksheet

Conditional Probability Worksheet Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

More information

Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment

More information

4.3 Rules of Probability

4.3 Rules of Probability 4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

More information

COMPOUND EVENTS. Judo Math Inc.

COMPOUND EVENTS. Judo Math Inc. COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)

More information

Chapter 3: PROBABILITY

Chapter 3: PROBABILITY Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of

More information

Bayes stuff Red Cross and Blood Example

Bayes stuff Red Cross and Blood Example Bayes stuff Red Cross and Blood Example 42% of the workers at Motor Works are female, while 67% of the workers at City Bank are female. If one of these companies is selected at random (assume a 50-50 chance

More information

Math 1342 Exam 2 Review

Math 1342 Exam 2 Review Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this

More information

Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Chapter 11: Probability and Counting Techniques Diana Pell Section 11.1: The Fundamental Counting Principle Exercise 1. How many different two-letter words (including nonsense words) can be formed when

More information

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015 1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

More information

Math 1101 Combinations Handout #17

Math 1101 Combinations Handout #17 Math 1101 Combinations Handout #17 1. Compute the following: (a) C(8, 4) (b) C(17, 3) (c) C(20, 5) 2. In the lottery game Megabucks, it used to be that a person chose 6 out of 36 numbers. The order of

More information

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices

More information

Study Island Statistics and Probability

Study Island Statistics and Probability Study Island Statistics and Probability Copyright 2014 Edmentum - All rights reserved. 1. An experiment is broken up into two parts. In the first part of the experiment, a six-sided die is rolled. In the

More information

Section 7.1 Experiments, Sample Spaces, and Events

Section 7.1 Experiments, Sample Spaces, and Events Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.

More information

Making Predictions with Theoretical Probability

Making Predictions with Theoretical Probability ? LESSON 6.3 Making Predictions with Theoretical Probability ESSENTIAL QUESTION Proportionality 7.6.H Solve problems using qualitative and quantitative predictions and comparisons from simple experiments.

More information

MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK. 7th Grade Unit 6 MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

More information

6) A) both; happy B) neither; not happy C) one; happy D) one; not happy

6) A) both; happy B) neither; not happy C) one; happy D) one; not happy MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Mathematical Ideas Chapter 2 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In one town, 2% of all voters are Democrats. If two voters

More information

Mutually Exclusive Events

Mutually Exclusive Events 6.5 Mutually Exclusive Events The phone rings. Jacques is really hoping that it is one of his friends calling about either softball or band practice. Could the call be about both? In such situations, more

More information

Math 1070 Sample Exam 2

Math 1070 Sample Exam 2 University of Connecticut Department of Mathematics Math 1070 Sample Exam 2 Exam 2 will cover sections 4.6, 4.7, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3, 6.4, F.1, F.2, F.3 and F.4. This sample exam is intended to

More information

PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY. 1. Introduction. Candidates should able to: PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

More information

Math 1070 Sample Exam 1

Math 1070 Sample Exam 1 University of Connecticut Department of Mathematics Math 1070 Sample Exam 1 Exam 1 will cover sections 4.1-4.7 and 5.1-5.4. This sample exam is intended to be used as one of several resources to help you

More information

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

More information

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts. Theoretical Probability. Terminology. Lesson 11-1 Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

More information

TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

More information

Mathematics 3201 Test (Unit 3) Probability FORMULAES

Mathematics 3201 Test (Unit 3) Probability FORMULAES Mathematics 3201 Test (Unit 3) robability Name: FORMULAES ( ) A B A A B A B ( A) ( B) ( A B) ( A and B) ( A) ( B) art A : lace the letter corresponding to the correct answer to each of the following in

More information

out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white?

out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white? Example: Leah places four white marbles and two black marbles in a bag She plans to draw out one marble and then a second marble without replacing the first What is the probability that both marbles will

More information

Date. Probability. Chapter

Date. Probability. Chapter Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

More information

Math 1313 Conditional Probability. Basic Information

Math 1313 Conditional Probability. Basic Information Math 1313 Conditional Probability Basic Information We have already covered the basic rules of probability, and we have learned the techniques for solving problems with large sample spaces. Next we will

More information

5.6. Independent Events. INVESTIGATE the Math. Reflecting

5.6. Independent Events. INVESTIGATE the Math. Reflecting 5.6 Independent Events YOU WILL NEED calculator EXPLORE The Fortin family has two children. Cam determines the probability that the family has two girls. Rushanna determines the probability that the family

More information

Probability and Counting Techniques

Probability and Counting Techniques Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

More information

Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103

Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103 Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103 1. (8) The following are amounts of time (minutes) spent on hygiene and grooming

More information

STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes

STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes Pengyuan (Penelope) Wang May 25, 2011 Review We have discussed counting techniques in Chapter 1. (Principle

More information

Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is

More information

Independent and Mutually Exclusive Events

Independent and Mutually Exclusive Events Independent and Mutually Exclusive Events By: OpenStaxCollege Independent and mutually exclusive do not mean the same thing. Independent Events Two events are independent if the following are true: P(A

More information

Review Questions on Ch4 and Ch5

Review Questions on Ch4 and Ch5 Review Questions on Ch4 and Ch5 1. Find the mean of the distribution shown. x 1 2 P(x) 0.40 0.60 A) 1.60 B) 0.87 C) 1.33 D) 1.09 2. A married couple has three children, find the probability they are all

More information

PROBABILITY Case of cards

PROBABILITY Case of cards WORKSHEET NO--1 PROBABILITY Case of cards WORKSHEET NO--2 Case of two die Case of coins WORKSHEET NO--3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure

More information

Here are two situations involving chance:

Here are two situations involving chance: Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

More information

Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

More information

Intermediate Math Circles November 1, 2017 Probability I. Problem Set Solutions

Intermediate Math Circles November 1, 2017 Probability I. Problem Set Solutions Intermediate Math Circles November 1, 2017 Probability I Problem Set Solutions 1. Suppose we draw one card from a well-shuffled deck. Let A be the event that we get a spade, and B be the event we get an

More information

Section The Multiplication Principle and Permutations

Section The Multiplication Principle and Permutations Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

More information

Name: Spring P. Walston/A. Moore. Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams FCP

Name: Spring P. Walston/A. Moore. Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams FCP Name: Spring 2016 P. Walston/A. Moore Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams 1-0 13 FCP 1-1 16 Combinations/ Permutations Factorials 1-2 22 1-3 20 Intro to Probability

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

More information

Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY

Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue

More information

Probability of Independent and Dependent Events. CCM2 Unit 6: Probability

Probability of Independent and Dependent Events. CCM2 Unit 6: Probability Probability of Independent and Dependent Events CCM2 Unit 6: Probability Independent and Dependent Events Independent Events: two events are said to be independent when one event has no affect on the probability

More information

Spring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name

Spring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name Spring 2015 Math227 Test #2 (Chapter 4 and Chapter 5) Name Show all work neatly and systematically for full credit. You may use a TI calculator. Total points: 100 Provide an appropriate response. 1) (5)

More information

Section A Calculating Probabilities & Listing Outcomes Grade F D

Section A Calculating Probabilities & Listing Outcomes Grade F D Name: Teacher Assessment Section A Calculating Probabilities & Listing Outcomes Grade F D 1. A fair ordinary six-sided dice is thrown once. The boxes show some of the possible outcomes. Draw a line from

More information

Math 1 Unit 4 Mid-Unit Review Chances of Winning

Math 1 Unit 4 Mid-Unit Review Chances of Winning Math 1 Unit 4 Mid-Unit Review Chances of Winning Name My child studied for the Unit 4 Mid-Unit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

More information

Individual 5 th Grade

Individual 5 th Grade Individual 5 th Grade Instructions: Problems 1 10 are multiple choice and count towards your team score. Bubble in the letter on your answer sheet. Be sure to erase all mistakes completely. 1. Which one

More information

CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

More information

Exam 2 Review F09 O Brien. Finite Mathematics Exam 2 Review

Exam 2 Review F09 O Brien. Finite Mathematics Exam 2 Review Finite Mathematics Exam Review Approximately 5 0% of the questions on Exam will come from Chapters, 4, and 5. The remaining 70 75% will come from Chapter 7. To help you prepare for the first part of the

More information

KS3 Levels 3-8. Unit 3 Probability. Homework Booklet. Complete this table indicating the homework you have been set and when it is due by.

KS3 Levels 3-8. Unit 3 Probability. Homework Booklet. Complete this table indicating the homework you have been set and when it is due by. Name: Maths Group: Tutor Set: Unit 3 Probability Homework Booklet KS3 Levels 3-8 Complete this table indicating the homework you have been set and when it is due by. Date Homework Due By Handed In Please

More information

Acing Math (One Deck At A Time!): A Collection of Math Games. Table of Contents

Acing Math (One Deck At A Time!): A Collection of Math Games. Table of Contents Table of Contents Introduction to Acing Math page 5 Card Sort (Grades K - 3) page 8 Greater or Less Than (Grades K - 3) page 9 Number Battle (Grades K - 3) page 10 Place Value Number Battle (Grades 1-6)

More information

, -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4.

, -the of all of a probability experiment. consists of outcomes. (b) List the elements of the event consisting of a number that is greater than 4. 4-1 Sample Spaces and Probability as a general concept can be defined as the chance of an event occurring. In addition to being used in games of chance, probability is used in the fields of,, and forecasting,

More information

Foundations to Algebra In Class: Investigating Probability

Foundations to Algebra In Class: Investigating Probability Foundations to Algebra In Class: Investigating Probability Name Date How can I use probability to make predictions? Have you ever tried to predict which football team will win a big game? If so, you probably

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations In statistics, there are two ways to count or group items. For both permutations and combinations, there are certain requirements that must be met: there can be no repetitions

More information

Data Collection Sheet

Data Collection Sheet Data Collection Sheet Name: Date: 1 Step Race Car Game Play 5 games where player 1 moves on roles of 1, 2, and 3 and player 2 moves on roles of 4, 5, # of times Player1 wins: 3. What is the theoretical

More information

P(X is on ) Practice Test - Chapter 13. BASEBALL A baseball team fields 9 players. How many possible batting orders are there for the 9 players?

P(X is on ) Practice Test - Chapter 13. BASEBALL A baseball team fields 9 players. How many possible batting orders are there for the 9 players? Point X is chosen at random on. Find the probability of each event. P(X is on ) P(X is on ) BASEBALL A baseball team fields 9 players. How many possible batting orders are there for the 9 players? or 362,880.

More information

Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states:

Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states: Worksheet 4.11 Counting Section 1 Introduction When looking at situations involving counting it is often not practical to count things individually. Instead techniques have been developed to help us count

More information

MEP Practice Book SA5

MEP Practice Book SA5 5 Probability 5.1 Probabilities MEP Practice Book SA5 1. Describe the probability of the following events happening, using the terms Certain Very likely Possible Very unlikely Impossible (d) (e) (f) (g)

More information

Moore, IPS 6e Chapter 05

Moore, IPS 6e Chapter 05 Page 1 of 9 Moore, IPS 6e Chapter 05 Quizzes prepared by Dr. Patricia Humphrey, Georgia Southern University Suppose that you are a student worker in the Statistics Department and they agree to pay you

More information

7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events 7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

More information

2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and

2. Let E and F be two events of the same sample space. If P (E) =.55, P (F ) =.70, and c Dr. Patrice Poage, August 23, 2017 1 1324 Exam 1 Review NOTE: This review in and of itself does NOT prepare you for the test. You should be doing this review in addition to all your suggested homework,

More information

Probability Simulation User s Manual

Probability Simulation User s Manual Probability Simulation User s Manual Documentation of features and usage for Probability Simulation Copyright 2000 Corey Taylor and Rusty Wagner 1 Table of Contents 1. General Setup 3 2. Coin Section 4

More information

Chapter 7 Homework Problems. 1. If a carefully made die is rolled once, it is reasonable to assign probability 1/6 to each of the six faces.

Chapter 7 Homework Problems. 1. If a carefully made die is rolled once, it is reasonable to assign probability 1/6 to each of the six faces. Chapter 7 Homework Problems 1. If a carefully made die is rolled once, it is reasonable to assign probability 1/6 to each of the six faces. A. What is the probability of rolling a number less than 3. B.

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #23: Discrete Probability Based on materials developed by Dr. Adam Lee The study of probability is

More information

Poker: Probabilities of the Various Hands

Poker: Probabilities of the Various Hands Poker: Probabilities of the Various Hands 22 February 2012 Poker II 22 February 2012 1/27 Some Review from Monday There are 4 suits and 13 values. The suits are Spades Hearts Diamonds Clubs There are 13

More information

Section : Combinations and Permutations

Section : Combinations and Permutations Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

More information

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION Name: Period: Date: NON-CALCULATOR SECTION Vocabulary: Define each word and give an example. 1. discrete mathematics 2. dependent outcomes 3. series Short Answer: 4. Describe when to use a combination.

More information

Important Distributions 7/17/2006

Important Distributions 7/17/2006 Important Distributions 7/17/2006 Discrete Uniform Distribution All outcomes of an experiment are equally likely. If X is a random variable which represents the outcome of an experiment of this type, then

More information

Grade 8 Math Assignment: Probability

Grade 8 Math Assignment: Probability Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors - The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper

More information

STATION 1: ROULETTE. Name of Guesser Tally of Wins Tally of Losses # of Wins #1 #2

STATION 1: ROULETTE. Name of Guesser Tally of Wins Tally of Losses # of Wins #1 #2 Casino Lab 2017 -- ICM The House Always Wins! Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away

More information

The probability set-up

The probability set-up CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

More information

FALL 2012 MATH 1324 REVIEW EXAM 4

FALL 2012 MATH 1324 REVIEW EXAM 4 FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die

More information

8.3 Probability with Permutations and Combinations

8.3 Probability with Permutations and Combinations 8.3 Probability with Permutations and Combinations Question 1: How do you find the likelihood of a certain type of license plate? Question 2: How do you find the likelihood of a particular committee? Question

More information

Lesson 6: Using Tree Diagrams to Represent a Sample Space and to Calculate Probabilities

Lesson 6: Using Tree Diagrams to Represent a Sample Space and to Calculate Probabilities Lesson 6: Using Tree Diagrams to Represent a Sample Space and to Student Outcomes Given a description of a chance experiment that can be thought of as being performed in two or more stages, students use

More information

Before giving a formal definition of probability, we explain some terms related to probability.

Before giving a formal definition of probability, we explain some terms related to probability. probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely

More information

Use Venn diagrams to determine whether the following statements are equal for all sets A and B. 2) A' B', A B Answer: not equal

Use Venn diagrams to determine whether the following statements are equal for all sets A and B. 2) A' B', A B Answer: not equal Test Prep Name Let U = {q, r, s, t, u, v, w, x, y, z} A = {q, s, u, w, y} B = {q, s, y, z} C = {v, w, x, y, z} Determine the following. ) (A' C) B' {r, t, v, w, x} Use Venn diagrams to determine whether

More information

19.4 Mutually Exclusive and Overlapping Events

19.4 Mutually Exclusive and Overlapping Events Name Class Date 19.4 Mutually Exclusive and Overlapping Events Essential Question: How are probabilities affected when events are mutually exclusive or overlapping? Resource Locker Explore 1 Finding the

More information

KS3 Questions Probability. Level 3 to 5.

KS3 Questions Probability. Level 3 to 5. KS3 Questions Probability. Level 3 to 5. 1. A survey was carried out on the shoe size of 25 men. The results of the survey were as follows: 5 Complete the tally chart and frequency table for this data.

More information

PROBABILITY. Chapter 3

PROBABILITY. Chapter 3 PROBABILITY Chapter 3 IN THIS UNIT STUDENTS WILL: Solve contextual problems involving odds and probability. Determine probability using counting methods: Fundamental Counting Principle, Permutations, and

More information

Simple Probability. Arthur White. 28th September 2016

Simple Probability. Arthur White. 28th September 2016 Simple Probability Arthur White 28th September 2016 Probabilities are a mathematical way to describe an uncertain outcome. For eample, suppose a physicist disintegrates 10,000 atoms of an element A, and

More information

Probability Review Questions

Probability Review Questions Probability Review Questions Short Answer 1. State whether the following events are mutually exclusive and explain your reasoning. Selecting a prime number or selecting an even number from a set of 10

More information

The game of poker. Gambling and probability. Poker probability: royal flush. Poker probability: four of a kind

The game of poker. Gambling and probability. Poker probability: royal flush. Poker probability: four of a kind The game of poker Gambling and probability CS231 Dianna Xu 1 You are given 5 cards (this is 5-card stud poker) The goal is to obtain the best hand you can The possible poker hands are (in increasing order):

More information

Name: Section: Date:

Name: Section: Date: WORKSHEET 5: PROBABILITY Name: Section: Date: Answer the following problems and show computations on the blank spaces provided. 1. In a class there are 14 boys and 16 girls. What is the probability of

More information

#2. A coin is tossed 40 times and lands on heads 21 times. What is the experimental probability of the coin landing on tails?

#2. A coin is tossed 40 times and lands on heads 21 times. What is the experimental probability of the coin landing on tails? 1 Pre-AP Geometry Chapter 14 Test Review Standards/Goals: A.1.f.: I can find the probability of a simple event. F.1.c.: I can use area to solve problems involving geometric probability. S.CP.1: I can define

More information

10.1 Applying the Counting Principle and Permutations (helps you count up the number of possibilities!)

10.1 Applying the Counting Principle and Permutations (helps you count up the number of possibilities!) 10.1 Applying the Counting Principle and Permutations (helps you count up the number of possibilities!) Example 1: Pizza You are buying a pizza. You have a choice of 3 crusts, 4 cheeses, 5 meat toppings,

More information

Probability as a general concept can be defined as the chance of an event occurring.

Probability as a general concept can be defined as the chance of an event occurring. 3. Probability In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. Probability as a general

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 3 Probability 3.1 Basic Concepts of Probability and Counting 1 Find Probabilities 1) A coin is tossed. Find the probability that the result is heads. A) 0. B) 0.1 C) 0.9 D) 1 2) A single six-sided

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapter 3: Practice SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) A study of 000 randomly selected flights of a major

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1324 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Insert " " or " " in the blank to make the statement true. 1) {18, 27, 32}

More information

USATestprep, Inc. Number of Gallons of Gas

USATestprep, Inc. Number of Gallons of Gas USAestprep, Inc. \JSf~~Jp Analytic Geometry EOC Quiz Answer Key Statistics and Probability (MCC9-.S.ID.6a) Fit A Function o Data, (MCC9-.S.CP.l) Events And Outcome Sets, (MCC9-.S.CP.) Independent Events,

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS CHAPTER 3 PROBABILITY TOPICS 165 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction By the end of this

More information

Probability Review before Quiz. Unit 6 Day 6 Probability

Probability Review before Quiz. Unit 6 Day 6 Probability Probability Review before Quiz Unit 6 Day 6 Probability Warm-up: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be

More information

Theoretical Probability and Simulations

Theoretical Probability and Simulations ? Theoretical Probability and Simulations ESSENTIAL QUESTION How can you use theoretical probability to solve real-world problems? MODULE 13 LESSON 13.1 Theoretical Probability of Simple Events 7.SP.7,

More information

Module 4 Project Maths Development Team Draft (Version 2)

Module 4 Project Maths Development Team Draft (Version 2) 5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

More information

Unit on Permutations and Combinations (Counting Techniques)

Unit on Permutations and Combinations (Counting Techniques) Page 1 of 15 (Edit by Y.M. LIU) Page 2 of 15 (Edit by Y.M. LIU) Unit on Permutations and Combinations (Counting Techniques) e.g. How many different license plates can be made that consist of three digits

More information