Solitaire Games. MATH 171 Freshman Seminar for Mathematics Majors. J. Robert Buchanan. Department of Mathematics. Fall 2010

Size: px
Start display at page:

Download "Solitaire Games. MATH 171 Freshman Seminar for Mathematics Majors. J. Robert Buchanan. Department of Mathematics. Fall 2010"

Transcription

1 Solitaire Games MATH 171 Freshman Seminar for Mathematics Majors J. Robert Buchanan Department of Mathematics Fall 2010

2 Standard Checkerboard

3 Challenge 1 Suppose two diagonally opposite corners of the checkerboard have been removed. Can the remaining region be covered by a set of 31 dominoes?

4 Challenge 2 Suppose two adjacent corners of the checkerboard have been removed. Can the remaining region be covered by a set of 31 dominoes?

5 Challenge 3 1 Is it possible to cover all but one square of an 8 by 8 checkerboard by using 21 straight trominoes? 2 If the covering is possible, which squares must be left uncovered? Straight Trominoe

6 Tricolor Checkerboard

7 Fifteen Puzzle The Fifteen Puzzle was invented in the 1870s by Sam Loyd. The puzzle consists of a flat box containing 15 movable pieces numbered 1 through 15. The starting configuration resembles:

8 Challenge 4 By sliding any piece adjacent to the blank space, rearrange the pieces to resemble: No piece may be removed from the box at any time.

9 Comments and Questions Is this puzzle solvable? Which rearrangements of the pieces are possible?

10 Useful Problem Solving Principle When faced with a problem you do not know how to solve, try solving a simpler, related problem.

11 Useful Problem Solving Principle When faced with a problem you do not know how to solve, try solving a simpler, related problem. Consider a 2 2 version, we will call the Three Puzzle: Which rearrangements of the pieces are possible?

12 Ordering Scheme Ignoring the blank, we may list the pieces in the order given by the pattern:

13 Ordering Scheme Ignoring the blank, we may list the pieces in the order given by the pattern: The possible rearrangements can be listed using ordered triples: (1, 2, 3), (2, 3, 1), and (3, 1, 2).

14 Permutations Definition Any ordering of n distinct items {1, 2, 3,...,n} is called a permutation. There are n(n 1)(n 2)(n 3) (3)(2)(1) = n! permutations of n items.

15 Permutations Definition Any ordering of n distinct items {1, 2, 3,...,n} is called a permutation. There are n(n 1)(n 2)(n 3) (3)(2)(1) = n! permutations of n items. How many permutations of {1, 2, 3} are possible? Which ordered triples are not attainable as rearrangements of the starting position in the Three Puzzle?

16 Inversions Definition In any permutation of the numbers {1, 2, 3,..., n} an inversion occurs whenever a larger number precedes a smaller number.

17 Inversions Definition In any permutation of the numbers {1, 2, 3,..., n} an inversion occurs whenever a larger number precedes a smaller number. Example The permutation (1, 5, 2, 4, 3) contains four inversions.

18 Inversions Definition In any permutation of the numbers {1, 2, 3,..., n} an inversion occurs whenever a larger number precedes a smaller number. Example The permutation (1, 5, 2, 4, 3) contains four inversions. How many inversions are in each of the following permutations? 1 (1, 2, 3, 4, 5, 6) 2 (7, 1, 4, 6, 3, 2, 5) 3 (5, 1, 6, 8, 2, 4, 7, 3)

19 Even and Odd Permutations Definition A permutation is said to be even if it contains an even number of inversions, and is said to be odd otherwise. The even-ness or odd-ness of the permutation is referred to as the permutation s parity.

20 Even and Odd Permutations Definition A permutation is said to be even if it contains an even number of inversions, and is said to be odd otherwise. The even-ness or odd-ness of the permutation is referred to as the permutation s parity. Are the following permutations even or odd? 1 (6, 5, 4, 3, 2, 1) 2 (3, 8, 1, 4, 5, 6, 7, 2) 3 (3, 7, 4, 2, 8, 6, 1, 5)

21 Permutations and Parity (1 of 2) Question: what effect does interchanging two adjacent numbers in a permutation have on the parity? (..., a, b,...) (...,b, a,...)

22 Permutations and Parity (1 of 2) Question: what effect does interchanging two adjacent numbers in a permutation have on the parity? (..., a, b,...) (...,b, a,...) Answer: the two permutations have opposite parities.

23 Permutations and Parity (2 of 2) Task: compare the parities of the following two permutations. (..., a, b 1, b 2,..., b r,...) (...,b 1, b 2,..., b r, a,...)

24 Permutations and Parity (2 of 2) Task: compare the parities of the following two permutations. (..., a, b 1, b 2,..., b r,...) (...,b 1, b 2,..., b r, a,...) Answer: they have the same parity if r is even and opposite parity if r is odd.

25 Five Puzzle Consider the 2 3 version of the puzzle:

26 Analysis of the Five Puzzle How many permutations of {1, 2, 3, 4, 5} are possible?

27 Analysis of the Five Puzzle How many permutations of {1, 2, 3, 4, 5} are possible? Using the permutation listing pattern, what effect does a horizontal move have on the parity of the permutation?

28 Analysis of the Five Puzzle How many permutations of {1, 2, 3, 4, 5} are possible? Using the permutation listing pattern, what effect does a horizontal move have on the parity of the permutation? What effect does a vertical move have on the parity of the permutation?

29 Analysis of the Five Puzzle How many permutations of {1, 2, 3, 4, 5} are possible? Using the permutation listing pattern, what effect does a horizontal move have on the parity of the permutation? What effect does a vertical move have on the parity of the permutation? What is the parity of the starting arrangement?

30 Analysis of the Five Puzzle How many permutations of {1, 2, 3, 4, 5} are possible? Using the permutation listing pattern, what effect does a horizontal move have on the parity of the permutation? What effect does a vertical move have on the parity of the permutation? What is the parity of the starting arrangement? What is the parity of any rearrangement of the starting arrangement?

31 Analysis of the Five Puzzle How many permutations of {1, 2, 3, 4, 5} are possible? Using the permutation listing pattern, what effect does a horizontal move have on the parity of the permutation? What effect does a vertical move have on the parity of the permutation? What is the parity of the starting arrangement? What is the parity of any rearrangement of the starting arrangement? How many different rearrangements of the starting arrangement are possible?

32 Challenge Given a starting arrangement of following rearrangements can be achieved?, which of the (A) (B) (C)

33 Ordering of Fifteen Puzzle Ignoring the blank, use the following ordering for the Fifteen Puzzle: Starting permutation: (1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 15, 14, 13)

34 Homework 1 How many permutations are there for {1, 2, 3,...,15}? 2 What is the parity of the starting permutation? 3 What effect on parity does a horizontal movement of the pieces have? 4 What effect on parity does a vertical movement of the pieces have? (Consider all cases.) 5 Is the solution to the Fifteen Puzzle achievable? Why or why not? 6 How many achievable permutations exist for the Fifteen Puzzle given its starting permutation?

35 Hi Q Consider a board containing 33 holes in a pattern as below. Suppose a peg is in each hole except for the center hole.

36 Hi Q Objective Whenever two adjacent (either horizontally or vertically) holes are occupied and the next hole in the same line is empty, the two pegs from the occupied holes may be removed and one of them placed in the third hole. In other words, one peg jumps over the other and lands in the vacant hole. The peg that was jumped is removed. 1 Can only one peg be left? 2 If this is accomplished, in which holes can the final peg be found?

37 Hi Q Coloring and Parity Suppose we color the squares red, black, and white. What are the counts of occupied red, black, and white squares?

38 Jumps and Parity What effect does a jump have on the counts of occupied red, black, and white squares?

39 Final Position and Parity If only one peg is left on the board, what will be the counts of the occupied red, black and white squares?

40 Final Position and Parity If only one peg is left on the board, what will be the counts of the occupied red, black and white squares? Which of these is compatible with the parity of the starting counts?

41 Final Position and Parity If only one peg is left on the board, what will be the counts of the occupied red, black and white squares? Which of these is compatible with the parity of the starting counts? Which squares can be left occupied last?

42 Numbering the Squares A jump can be denoted by an ordered pair like (46, 44) meaning the peg in square 46 jumps to square 44 and the peg in 45 is removed.

43 Homework Find a sequence of jumps that leaves a single square occupied.

Permutations. = f 1 f = I A

Permutations. = f 1 f = I A Permutations. 1. Definition (Permutation). A permutation of a set A is a bijective function f : A A. The set of all permutations of A is denoted by Perm(A). 2. If A has cardinality n, then Perm(A) has

More information

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Kyle A. Bishop Dustin L. Madsen December 15, 2009 Introduction The Sam Loyd puzzle was a 4 4 grid invented in the 1870 s with numbers 0 through 15 on each

More information

Once you get a solution draw it below, showing which three pennies you moved and where you moved them to. My Solution:

Once you get a solution draw it below, showing which three pennies you moved and where you moved them to. My Solution: Arrange 10 pennies on your desk as shown in the diagram below. The challenge in this puzzle is to change the direction of that the triangle is pointing by moving only three pennies. Once you get a solution

More information

CRACKING THE 15 PUZZLE - PART 1: PERMUTATIONS

CRACKING THE 15 PUZZLE - PART 1: PERMUTATIONS CRACKING THE 15 PUZZLE - PART 1: PERMUTATIONS BEGINNERS 01/24/2016 The ultimate goal of this topic is to learn how to determine whether or not a solution exists for the 15 puzzle. The puzzle consists of

More information

Grade 7/8 Math Circles. Visual Group Theory

Grade 7/8 Math Circles. Visual Group Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles October 25 th /26 th Visual Group Theory Grouping Concepts Together We will start

More information

Polyominoes. n

Polyominoes. n Polyominoes A polyonmino is the name given to plane figures created by groups of squares touching at their edges. Polyominoes are generally referred to in groups, sharing a characteristic number of sides,

More information

CRACKING THE 15 PUZZLE - PART 4: TYING EVERYTHING TOGETHER BEGINNERS 02/21/2016

CRACKING THE 15 PUZZLE - PART 4: TYING EVERYTHING TOGETHER BEGINNERS 02/21/2016 CRACKING THE 15 PUZZLE - PART 4: TYING EVERYTHING TOGETHER BEGINNERS 02/21/2016 Review Recall from last time that we proved the following theorem: Theorem 1. The sign of any transposition is 1. Using this

More information

Grade 7/8 Math Circles. Visual Group Theory

Grade 7/8 Math Circles. Visual Group Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles October 25 th /26 th Visual Group Theory Grouping Concepts Together We will start

More information

Weighted Polya Theorem. Solitaire

Weighted Polya Theorem. Solitaire Weighted Polya Theorem. Solitaire Sasha Patotski Cornell University ap744@cornell.edu December 15, 2015 Sasha Patotski (Cornell University) Weighted Polya Theorem. Solitaire December 15, 2015 1 / 15 Cosets

More information

BMT 2018 Combinatorics Test Solutions March 18, 2018

BMT 2018 Combinatorics Test Solutions March 18, 2018 . Bob has 3 different fountain pens and different ink colors. How many ways can he fill his fountain pens with ink if he can only put one ink in each pen? Answer: 0 Solution: He has options to fill his

More information

Heuristic Search with Pre-Computed Databases

Heuristic Search with Pre-Computed Databases Heuristic Search with Pre-Computed Databases Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Use pre-computed partial results to improve the efficiency of heuristic

More information

Fifteen puzzle. Sasha Patotski. Cornell University November 16, 2015

Fifteen puzzle. Sasha Patotski. Cornell University November 16, 2015 Fifteen puzzle. Sasha Patotski Cornell University ap744@cornell.edu November 16, 2015 Sasha Patotski (Cornell University) Fifteen puzzle. November 16, 2015 1 / 7 Last time The permutation group S n is

More information

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

I.M.O. Winter Training Camp 2008: Invariants and Monovariants I.M.. Winter Training Camp 2008: Invariants and Monovariants n math contests, you will often find yourself trying to analyze a process of some sort. For example, consider the following two problems. Sample

More information

THE 15-PUZZLE (AND RUBIK S CUBE)

THE 15-PUZZLE (AND RUBIK S CUBE) THE 15-PUZZLE (AND RUBIK S CUBE) KEITH CONRAD 1. Introduction A permutation puzzle is a toy where the pieces can be moved around and the object is to reassemble the pieces into their beginning state We

More information

Part I: The Swap Puzzle

Part I: The Swap Puzzle Part I: The Swap Puzzle Game Play: Randomly arrange the tiles in the boxes then try to put them in proper order using only legal moves. A variety of legal moves are: Legal Moves (variation 1): Swap the

More information

Notice: Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions.

Notice: Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions. Notice: Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions. Republication, systematic copying, or multiple reproduction of any part of this

More information

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA Graphs of Tilings Patrick Callahan, University of California Office of the President, Oakland, CA Phyllis Chinn, Department of Mathematics Humboldt State University, Arcata, CA Silvia Heubach, Department

More information

MATHEMATICS ON THE CHESSBOARD

MATHEMATICS ON THE CHESSBOARD MATHEMATICS ON THE CHESSBOARD Problem 1. Consider a 8 8 chessboard and remove two diametrically opposite corner unit squares. Is it possible to cover (without overlapping) the remaining 62 unit squares

More information

Solving Triangular Peg Solitaire

Solving Triangular Peg Solitaire 1 2 3 47 23 11 Journal of Integer Sequences, Vol. 11 (2008), Article 08.4.8 arxiv:math/070385v [math.co] 17 Jan 2009 Solving Triangular Peg Solitaire George I. Bell Tech-X Corporation 521 Arapahoe Ave,

More information

Chapter 4: Patterns and Relationships

Chapter 4: Patterns and Relationships Chapter : Patterns and Relationships Getting Started, p. 13 1. a) The factors of 1 are 1,, 3,, 6, and 1. The factors of are 1,,, 7, 1, and. The greatest common factor is. b) The factors of 16 are 1,,,,

More information

CRACKING THE 15 PUZZLE - PART 2: MORE ON PERMUTATIONS AND TAXICAB GEOMETRY

CRACKING THE 15 PUZZLE - PART 2: MORE ON PERMUTATIONS AND TAXICAB GEOMETRY CRACKING THE 15 PUZZLE - PART 2: MORE ON PERMUTATIONS AND TAXICAB GEOMETRY BEGINNERS 01/31/2016 Warm Up Find the product of the following permutations by first writing the permutations in their expanded

More information

Counting Problems

Counting Problems Counting Problems Counting problems are generally encountered somewhere in any mathematics course. Such problems are usually easy to state and even to get started, but how far they can be taken will vary

More information

Colouring tiles. Paul Hunter. June 2010

Colouring tiles. Paul Hunter. June 2010 Colouring tiles Paul Hunter June 2010 1 Introduction We consider the following problem: For each tromino/tetromino, what are the minimum number of colours required to colour the standard tiling of the

More information

PARITY, SYMMETRY, AND FUN PROBLEMS 1. April 16, 2017

PARITY, SYMMETRY, AND FUN PROBLEMS 1. April 16, 2017 PARITY, SYMMETRY, AND FUN PROBLEMS 1 April 16, 2017 Warm Up Problems Below are 11 numbers - six zeros and ve ones. Perform the following operation: cross out any two numbers. If they were equal, write

More information

The Mathematics of Playing Tic Tac Toe

The Mathematics of Playing Tic Tac Toe The Mathematics of Playing Tic Tac Toe by David Pleacher Although it has been shown that no one can ever win at Tic Tac Toe unless a player commits an error, the game still seems to have a universal appeal.

More information

Rubik's Domino R B F+ F2 F-

Rubik's Domino R B F+ F2 F- http://www.geocities.com/abcmcfarren/math/rdml/rubdom1.htm 12/12/2006 12:40 PM Rubik's Domino Circa 1981: I was at a K-mart waiting in line to buy a handful of commodities, and there they were... an entire

More information

Rotational Puzzles on Graphs

Rotational Puzzles on Graphs Rotational Puzzles on Graphs On this page I will discuss various graph puzzles, or rather, permutation puzzles consisting of partially overlapping cycles. This was first investigated by R.M. Wilson in

More information

Introduction to Pentominoes. Pentominoes

Introduction to Pentominoes. Pentominoes Pentominoes Pentominoes are those shapes consisting of five congruent squares joined edge-to-edge. It is not difficult to show that there are only twelve possible pentominoes, shown below. In the literature,

More information

Mistilings with Dominoes

Mistilings with Dominoes NOTE Mistilings with Dominoes Wayne Goddard, University of Pennsylvania Abstract We consider placing dominoes on a checker board such that each domino covers exactly some number of squares. Given a board

More information

Conway s Soldiers. Jasper Taylor

Conway s Soldiers. Jasper Taylor Conway s Soldiers Jasper Taylor And the maths problem that I did was called Conway s Soldiers. And in Conway s Soldiers you have a chessboard that continues infinitely in all directions and every square

More information

New Sliding Puzzle with Neighbors Swap Motion

New Sliding Puzzle with Neighbors Swap Motion Prihardono AriyantoA,B Kenichi KawagoeC Graduate School of Natural Science and Technology, Kanazawa UniversityA Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Email: prihardono.ari@s.itb.ac.id

More information

arxiv:cs/ v2 [cs.cc] 27 Jul 2001

arxiv:cs/ v2 [cs.cc] 27 Jul 2001 Phutball Endgames are Hard Erik D. Demaine Martin L. Demaine David Eppstein arxiv:cs/0008025v2 [cs.cc] 27 Jul 2001 Abstract We show that, in John Conway s board game Phutball (or Philosopher s Football),

More information

Lecture 2.3: Symmetric and alternating groups

Lecture 2.3: Symmetric and alternating groups Lecture 2.3: Symmetric and alternating groups Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

More information

Counting Things. Tom Davis March 17, 2006

Counting Things. Tom Davis   March 17, 2006 Counting Things Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 17, 2006 Abstract We present here various strategies for counting things. Usually, the things are patterns, or

More information

2 Textual Input Language. 1.1 Notation. Project #2 2

2 Textual Input Language. 1.1 Notation. Project #2 2 CS61B, Fall 2015 Project #2: Lines of Action P. N. Hilfinger Due: Tuesday, 17 November 2015 at 2400 1 Background and Rules Lines of Action is a board game invented by Claude Soucie. It is played on a checkerboard

More information

arxiv: v2 [math.ho] 23 Aug 2018

arxiv: v2 [math.ho] 23 Aug 2018 Mathematics of a Sudo-Kurve arxiv:1808.06713v2 [math.ho] 23 Aug 2018 Tanya Khovanova Abstract Wayne Zhao We investigate a type of a Sudoku variant called Sudo-Kurve, which allows bent rows and columns,

More information

Determinants, Part 1

Determinants, Part 1 Determinants, Part We shall start with some redundant definitions. Definition. Given a matrix A [ a] we say that determinant of A is det A a. Definition 2. Given a matrix a a a 2 A we say that determinant

More information

TOPIC 2: HOW TO COUNT

TOPIC 2: HOW TO COUNT TOPIC 2: HOW TO COUNT Problems and solutions on 'How many ways?' (Combinatorics). These start with very simple situations and illustrate how the methods can be extended to more difficult cases. 2. How

More information

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Section 1.7 Proof Methods and Strategy Page references correspond to locations of Extra Examples icons in the textbook. p.87,

More information

Week 1. 1 What Is Combinatorics?

Week 1. 1 What Is Combinatorics? 1 What Is Combinatorics? Week 1 The question that what is combinatorics is similar to the question that what is mathematics. If we say that mathematics is about the study of numbers and figures, then combinatorics

More information

The puzzle (also called the "Twisting Tri-Side Puzzle" in the UK) consists of intersecting discs of 6 (rounded) triangular tiles each which can rotate. There are two versions. The "Handy" and the "Challenge".

More information

For 1 to 4 players Ages 12 to adult. Ternion Factor TM. Three games of strategy Solitaire puzzles. A product of Kadon Enterprises, Inc.

For 1 to 4 players Ages 12 to adult. Ternion Factor TM. Three games of strategy Solitaire puzzles. A product of Kadon Enterprises, Inc. For 1 to 4 players Ages 12 to adult Ternion Factor TM Three games of strategy Solitaire puzzles A product of Kadon Enterprises, Inc. The Ternion Factor, Ternion Spaces, and Escape! are trademarks of Arthur

More information

Factorization of permutation

Factorization of permutation Department of Mathematics College of William and Mary Based on the paper: Zejun Huang,, Sharon H. Li, Nung-Sing Sze, Amidakuji/Ghost Leg Drawing Amidakuji/Ghost Leg Drawing It is a scheme for assigning

More information

2012 Math Day Competition

2012 Math Day Competition 2012 Math Day Competition 1. Two cars are on a collision course, heading straight toward each other. One car is traveling at 45 miles per hour and the other at 75 miles per hour. How far apart will the

More information

Port to Port / Triple Cross

Port to Port / Triple Cross / Triple Cross Description Solution Triple Cross Solution Links to other useful pages: ThinkFun homepage, the new name of the manufacturer Binary Arts. David Barr's page has a complete solution to Triple

More information

Pyraminx Crystal. The number of positions: Links to other useful pages: Notation:

Pyraminx Crystal. The number of positions: Links to other useful pages: Notation: The is a dodecahedron shaped puzzle by Uwe Mèffert. It is similar to the megaminx in that it has twelve pentagonal faces that can turn, but the cuts lie slightly deeper. The cut of a face cuts go through

More information

The puzzle consists of three intersecting discs. As such it is similar to Trio, and the two-disc puzzles Turnstile and Rashkey. Unlike those puzzles however, the pieces are shaped so that they often prevent

More information

MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations)

MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations) MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #1 (Counting, symmetry, Platonic solids, permutations) The class will divide into four groups. Each group will have a different polygon

More information

Combinatorics in the group of parity alternating permutations

Combinatorics in the group of parity alternating permutations Combinatorics in the group of parity alternating permutations Shinji Tanimoto (tanimoto@cc.kochi-wu.ac.jp) arxiv:081.1839v1 [math.co] 10 Dec 008 Department of Mathematics, Kochi Joshi University, Kochi

More information

SHRIMATI INDIRA GANDHI COLLEGE

SHRIMATI INDIRA GANDHI COLLEGE SHRIMATI INDIRA GANDHI COLLEGE (Nationally Re-accredited at A Grade by NAAC) Trichy - 2. COMPILED AND EDITED BY : J.SARTHAJ BANU DEPARTMENT OF MATHEMATICS 1 LOGICAL REASONING 1.What number comes inside

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 1 May 26th, 2009 Introduction Probability is the study of randomness and uncertainty. In the early days, probability was associated with games of chance, such as

More information

Learning About Learning. Resource 1a (Activity 2) Shape Picture Activity - Shape 1. Shark. reference for teacher after shape has been cut out

Learning About Learning. Resource 1a (Activity 2) Shape Picture Activity - Shape 1. Shark. reference for teacher after shape has been cut out Resource 1a (Activity 2) Shape Picture Activity - Shape 1 reference for teacher after shape has been cut out Shark Resource 1b (Activity 2) Shape Picture Activity - Instructions 1 Station 1 Follow the

More information

Rubik 4x4x4 "Revenge"

Rubik 4x4x4 Revenge Rubik 4x4x4 "Revenge" a.k.a. Rubik's Master Cube "Rubik's Revenge"; Patented by P. Sebesteny 1983. (plastic, 2.5 inches) D-FantiX 4x4x4 Stickerless; purchased from Amazon.com, 2017. (plastic, 2.3 inches)

More information

MUMS seminar 24 October 2008

MUMS seminar 24 October 2008 MUMS seminar 24 October 2008 Tiles have been used in art and architecture since the dawn of civilisation. Toddlers grapple with tiling problems when they pack away their wooden blocks and home renovators

More information

Topspin: Oval-Track Puzzle, Taking Apart The Topspin One Tile At A Time

Topspin: Oval-Track Puzzle, Taking Apart The Topspin One Tile At A Time Salem State University Digital Commons at Salem State University Honors Theses Student Scholarship Fall 2015-01-01 Topspin: Oval-Track Puzzle, Taking Apart The Topspin One Tile At A Time Elizabeth Fitzgerald

More information

1 P a g e

1 P a g e 1 P a g e Dear readers, This Logical Reasoning Digest is docket of Questions which can be asked in upcoming BITSAT Exam 2018. 1. In each of the following questions, select a figure from amongst the four

More information

The 2013 British Informatics Olympiad

The 2013 British Informatics Olympiad Sponsored by Time allowed: 3 hours The 2013 British Informatics Olympiad Instructions You should write a program for part (a) of each question, and produce written answers to the remaining parts. Programs

More information

Pointers. The Rectangle Game. Robb T. Koether. Hampden-Sydney College. Mon, Jan 21, 2013

Pointers. The Rectangle Game. Robb T. Koether. Hampden-Sydney College. Mon, Jan 21, 2013 Pointers The Rectangle Game Robb T. Koether Hampden-Sydney College Mon, Jan 21, 2013 Robb T. Koether (Hampden-Sydney College) Pointers Mon, Jan 21, 2013 1 / 21 1 Introduction 2 The Game Board 3 The Move

More information

Coin-Moving Puzzles. arxiv:cs/ v1 [cs.dm] 31 Mar Introduction. Erik D. Demaine Martin L. Demaine Helena A. Verrill

Coin-Moving Puzzles. arxiv:cs/ v1 [cs.dm] 31 Mar Introduction. Erik D. Demaine Martin L. Demaine Helena A. Verrill Coin-Moving Puzzles Erik D. Demaine Martin L. Demaine Helena A. Verrill arxiv:cs/0000v [cs.dm] Mar 00 Abstract We introduce a new family of one-player games, involving the movement of coins from one configuration

More information

Recent Progress in the Design and Analysis of Admissible Heuristic Functions

Recent Progress in the Design and Analysis of Admissible Heuristic Functions From: AAAI-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. Recent Progress in the Design and Analysis of Admissible Heuristic Functions Richard E. Korf Computer Science Department

More information

Olympiad Combinatorics. Pranav A. Sriram

Olympiad Combinatorics. Pranav A. Sriram Olympiad Combinatorics Pranav A. Sriram August 2014 Chapter 2: Algorithms - Part II 1 Copyright notices All USAMO and USA Team Selection Test problems in this chapter are copyrighted by the Mathematical

More information

Part III F F J M. Name

Part III F F J M. Name Name 1. Pentaminoes 15 points 2. Pearls (Masyu) 20 points 3. Five Circles 30 points 4. Mastermindoku 35 points 5. Unequal Skyscrapers 40 points 6. Hex Alternate Corners 40 points 7. Easy Islands 45 points

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

Concept: Pythagorean Theorem Name:

Concept: Pythagorean Theorem Name: Concept: Pythagorean Theorem Name: Interesting Fact: The Pythagorean Theorem was one of the earliest theorems known to ancient civilizations. This famous theorem is named for the Greek mathematician and

More information

A Real-Time Algorithm for the (n 2 1)-Puzzle

A Real-Time Algorithm for the (n 2 1)-Puzzle A Real-Time Algorithm for the (n )-Puzzle Ian Parberry Department of Computer Sciences, University of North Texas, P.O. Box 886, Denton, TX 760 6886, U.S.A. Email: ian@cs.unt.edu. URL: http://hercule.csci.unt.edu/ian.

More information

CS 32 Puzzles, Games & Algorithms Fall 2013

CS 32 Puzzles, Games & Algorithms Fall 2013 CS 32 Puzzles, Games & Algorithms Fall 2013 Study Guide & Scavenger Hunt #2 November 10, 2014 These problems are chosen to help prepare you for the second midterm exam, scheduled for Friday, November 14,

More information

Principles of Counting. Notation for counting elements of sets

Principles of Counting. Notation for counting elements of sets Principles of Counting MATH 107: Finite Mathematics University of Louisville February 26, 2014 Underlying Principles Set Counting 2 / 12 Notation for counting elements of sets We let n(a) denote the number

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 6 Lecture - 37 Divide and Conquer: Counting Inversions

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 6 Lecture - 37 Divide and Conquer: Counting Inversions Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 6 Lecture - 37 Divide and Conquer: Counting Inversions Let us go back and look at Divide and Conquer again.

More information

Characterization of Domino Tilings of. Squares with Prescribed Number of. Nonoverlapping 2 2 Squares. Evangelos Kranakis y.

Characterization of Domino Tilings of. Squares with Prescribed Number of. Nonoverlapping 2 2 Squares. Evangelos Kranakis y. Characterization of Domino Tilings of Squares with Prescribed Number of Nonoverlapping 2 2 Squares Evangelos Kranakis y (kranakis@scs.carleton.ca) Abstract For k = 1; 2; 3 we characterize the domino tilings

More information

Exploring the City of Descartes I

Exploring the City of Descartes I Exploring the City of Descartes I November 9, 2012 Part I Review: (x,y) coordinates on the plane Please DO NOT use the geoboards in this part 1. For a point (x, y) on the plane, the first number is called

More information

OCTAGON 5 IN 1 GAME SET

OCTAGON 5 IN 1 GAME SET OCTAGON 5 IN 1 GAME SET CHESS, CHECKERS, BACKGAMMON, DOMINOES AND POKER DICE Replacement Parts Order direct at or call our Customer Service department at (800) 225-7593 8 am to 4:30 pm Central Standard

More information

arxiv:cs/ v3 [cs.ds] 9 Jul 2003

arxiv:cs/ v3 [cs.ds] 9 Jul 2003 Permutation Generation: Two New Permutation Algorithms JIE GAO and DIANJUN WANG Tsinghua University, Beijing, China arxiv:cs/0306025v3 [cs.ds] 9 Jul 2003 Abstract. Two completely new algorithms for generating

More information

CS3334 Data Structures Lecture 4: Bubble Sort & Insertion Sort. Chee Wei Tan

CS3334 Data Structures Lecture 4: Bubble Sort & Insertion Sort. Chee Wei Tan CS3334 Data Structures Lecture 4: Bubble Sort & Insertion Sort Chee Wei Tan Sorting Since Time Immemorial Plimpton 322 Tablet: Sorted Pythagorean Triples https://www.maa.org/sites/default/files/pdf/news/monthly105-120.pdf

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Lecture Notes Counting 101 Note to improve the readability of these lecture notes, we will assume that multiplication takes precedence over division, i.e. A / B*C

More information

John H. Conway, Richard Esterle Princeton University, Artist.

John H. Conway, Richard Esterle Princeton University, Artist. Games and Puzzles The Tetraball Puzzle John H. Conway, Richard Esterle Princeton University, Artist r.esterle@gmail.com Abstract: In this paper, the Tetraball Puzzle, a spatial puzzle involving tetrahedral

More information

Jamie Mulholland, Simon Fraser University

Jamie Mulholland, Simon Fraser University Games, Puzzles, and Mathematics (Part 1) Changing the Culture SFU Harbour Centre May 19, 2017 Richard Hoshino, Quest University richard.hoshino@questu.ca Jamie Mulholland, Simon Fraser University j mulholland@sfu.ca

More information

Figure 1: The Game of Fifteen

Figure 1: The Game of Fifteen 1 FIFTEEN One player has five pennies, the other five dimes. Players alternately cover a number from 1 to 9. You win by covering three numbers somewhere whose sum is 15 (see Figure 1). 1 2 3 4 5 7 8 9

More information

Third Grade: Mathematics. Unit 1: Math Strategies

Third Grade: Mathematics. Unit 1: Math Strategies Third Grade: Mathematics Unit 1: Math Strategies Math Strategies for Addition Open Number Line (Adding Up) The example below shows 543 + 387 using the open number line. First, you need to draw a blank

More information

Perry High School. 2 nd Semester!

Perry High School. 2 nd Semester! 2 nd Semester! Monday: Admin Review / Chess Tuesday: Admin Review / Chess Wednesday: The Code, Part 1, with worksheet Thursday: The Code, Part 2, with worksheet Friday: Chess, Chapter 5 Assignments Next

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define

More information

Pennies vs Paperclips

Pennies vs Paperclips Pennies vs Paperclips Today we will take part in a daring game, a clash of copper and steel. Today we play the game: pennies versus paperclips. Battle begins on a 2k by 2m (where k and m are natural numbers)

More information

1. Rectangles 20 points

1. Rectangles 20 points Name Rectangles points (+) Domino Hunt points Mirrors points (+) Skyscrapers points (+) ri-squares points (+) Meanders points (+) Fences points (+) ents points (+) Hungarian Count points Loopfinder points

More information

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES FLORIAN BREUER and JOHN MICHAEL ROBSON Abstract We introduce a game called Squares where the single player is presented with a pattern of black and white

More information

POKER (AN INTRODUCTION TO COUNTING)

POKER (AN INTRODUCTION TO COUNTING) POKER (AN INTRODUCTION TO COUNTING) LAMC INTERMEDIATE GROUP - 10/27/13 If you want to be a succesful poker player the first thing you need to do is learn combinatorics! Today we are going to count poker

More information

Abstract shape: a shape that is derived from a visual source, but is so transformed that it bears little visual resemblance to that source.

Abstract shape: a shape that is derived from a visual source, but is so transformed that it bears little visual resemblance to that source. Glossary of Terms Abstract shape: a shape that is derived from a visual source, but is so transformed that it bears little visual resemblance to that source. Accent: 1)The least prominent shape or object

More information

Missing Sequence. You have 10 minutes to complete this test. Select the square that comes next in the sequence.

Missing Sequence. You have 10 minutes to complete this test. Select the square that comes next in the sequence. Missing Sequence Select the square that comes next in the sequence. 1. 2. 3. Similarities 4. 5. 6. Analogies 7. 8. ` 9. Odd one out 10. 11. 12. Complete the grid 13. 14. 15. Answers 1. A- The pattern along

More information

Permutations and Combinations. MATH 107: Finite Mathematics University of Louisville. March 3, 2014

Permutations and Combinations. MATH 107: Finite Mathematics University of Louisville. March 3, 2014 Permutations and Combinations MATH 107: Finite Mathematics University of Louisville March 3, 2014 Multiplicative review Non-replacement counting questions 2 / 15 Building strings without repetition A familiar

More information

Introduction to Counting and Probability

Introduction to Counting and Probability Randolph High School Math League 2013-2014 Page 1 If chance will have me king, why, chance may crown me. Shakespeare, Macbeth, Act I, Scene 3 1 Introduction Introduction to Counting and Probability Counting

More information

A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA

A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA A NEW COMPUTATION OF THE CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA JOEL LOUWSMA, ADILSON EDUARDO PRESOTO, AND ALAN TARR Abstract. Krakowski and Regev found a basis of polynomial identities satisfied

More information

Movement of the pieces

Movement of the pieces Movement of the pieces Rook The rook moves in a straight line, horizontally or vertically. The rook may not jump over other pieces, that is: all squares between the square where the rook starts its move

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

Sudoku goes Classic. Gaming equipment and the common DOMINARI - rule. for 2 players from the age of 8 up

Sudoku goes Classic. Gaming equipment and the common DOMINARI - rule. for 2 players from the age of 8 up Sudoku goes Classic for 2 players from the age of 8 up Gaming equipment and the common DOMINARI - rule Board Sudoku goes classic is played on a square board of 6x6 fields. 4 connected fields of the same

More information

The first player to construct his or her obelisk is the winner, and if a player has no legal moves, he or she immediately loses the game.

The first player to construct his or her obelisk is the winner, and if a player has no legal moves, he or she immediately loses the game. Obelisk 1. Object Obelisk is a two-player strategy board game, and each player controls three stones. The largest base stone is the cornerstone. The smaller rectangular stone is the keystone. The pyramid-shaped

More information

ONE-POINT PERSPECTIVE

ONE-POINT PERSPECTIVE NAME: PERIOD: PERSPECTIVE Linear Perspective Linear Perspective is a technique for representing 3-dimensional space on a 2- dimensional (paper) surface. This method was invented during the Renaissance

More information

Intriguing Problems for Students in a Proofs Class

Intriguing Problems for Students in a Proofs Class Intriguing Problems for Students in a Proofs Class Igor Minevich Boston College AMS - MAA Joint Mathematics Meetings January 5, 2017 Outline 1 Induction 2 Numerical Invariant 3 Pigeonhole Principle Induction:

More information

Review I. October 14, 2008

Review I. October 14, 2008 Review I October 14, 008 If you put n + 1 pigeons in n pigeonholes then at least one hole would have more than one pigeon. If n(r 1 + 1 objects are put into n boxes, then at least one of the boxes contains

More information

Adventures with Rubik s UFO. Bill Higgins Wittenberg University

Adventures with Rubik s UFO. Bill Higgins Wittenberg University Adventures with Rubik s UFO Bill Higgins Wittenberg University Introduction Enro Rubik invented the puzzle which is now known as Rubik s Cube in the 1970's. More than 100 million cubes have been sold worldwide.

More information

Over ===* Three games of strategy and chance Unique solitaire puzzles. For I to 4 players Ages 12 to adult. PassTM

Over ===* Three games of strategy and chance Unique solitaire puzzles. For I to 4 players Ages 12 to adult. PassTM Over ===* For I to 4 players Ages 12 to adult PassTM Three games of strategy and chance Unique solitaire puzzles A product of Kadon Enterprises, Inc. Over-Pass is a trademark of Arthur Blumberg, used by

More information

Chapter 5 Integers. 71 Copyright 2013 Pearson Education, Inc. All rights reserved.

Chapter 5 Integers. 71 Copyright 2013 Pearson Education, Inc. All rights reserved. Chapter 5 Integers In the lower grades, students may have connected negative numbers in appropriate ways to informal knowledge derived from everyday experiences, such as below-zero winter temperatures

More information

Combinatorics. PIE and Binomial Coefficients. Misha Lavrov. ARML Practice 10/20/2013

Combinatorics. PIE and Binomial Coefficients. Misha Lavrov. ARML Practice 10/20/2013 Combinatorics PIE and Binomial Coefficients Misha Lavrov ARML Practice 10/20/2013 Warm-up Po-Shen Loh, 2013. If the letters of the word DOCUMENT are randomly rearranged, what is the probability that all

More information