ElGamal Public-Key Encryption and Signature

Size: px
Start display at page:

Download "ElGamal Public-Key Encryption and Signature"

Transcription

1 ElGamal Public-Key Encryption and Signature Çetin Kaya Koç Çetin Kaya Koç Winter / 10

2 ElGamal Cryptosystem and Signature Scheme Taher ElGamal, originally from Egypt, was a graduate student at Stanford University, and earned a PhD degree in 1984, Martin Hellman as his dissertation advisor He published a paper in 1985 titled A public key cryptosystem and a signature scheme based on discrete logarithms in which he proposed the ElGamal discrete log cryptosystem and the signature scheme The ElGamal signature scheme is the basis for Digital Signature Algorithm (DSA) adopted by the NIST The ElGamal cryptosystem essentially turns the Diffie-Hellman key exchange method into an encryption algorithm Çetin Kaya Koç Winter / 10

3 ElGamal Public-Key Encryption and Encryption Domain Parameters: The prime p and the generator g of Z p Keys: The private key is the integer x Z p and the public key y is computed as y = g x (mod p) Example: Given the prime p = 2579 and the generator g = 2, we select the private key x = 765, and compute the public key y as y = g x (mod p) = (mod 2579) = 949 (mod 2579) Therefore, the private key x = 765 and the public key y = 949 Çetin Kaya Koç Winter / 10

4 ElGamal Public-Key Encryption Encryption: The User B forms a message m Z p, generates a random number r and computes the ciphertext pair (c 1, c 2 ) c 1 = g r (mod p) c 2 = m y r (mod p) Example: Assume m = 1299, compute E(m) = (c 1, c 2 ) using the public key y = 949 and the random number r = 853 c 1 = g r (mod p) = = 435 (mod 2579) c 2 = m y r (mod p) = = 2396 (mod 2579) Therefore, E(1299) = (c 1, c 2 ) = (435, 2396) Çetin Kaya Koç Winter / 10

5 ElGamal Public-Key Decryption Decryption: The User A decrypts the ciphertext pair (c 1, c 2 ) to obtain the message m by computing u 1 = c1 x = (g r ) x = (g x ) r = y r (mod p) u 2 = c 2 u1 1 = y r m y r = m (mod p) Given E(m) = (c 1, c 2 ) = (435, 2396), the User A finds the plaintext: u 1 = c x 1 (mod p) = = 2424 (mod 2579) u 2 = c 2 u 1 1 (mod p) = = 1299 (mod 2579) Therefore, D(c 1, c 2 ) = D(435, 2396) = 1299 Çetin Kaya Koç Winter / 10

6 ElGamal Cryptosystem Properties The ElGamal cryptosystem is a randomized algorithm: Every encryption requires the generation and use of a random number r The random number r should not be guessable The same random number r should not be used for another encryption, otherwise, the knowledge of one message allows the adversary to compute the other message The random number r is not needed for decryption The ElGamal cryptosystem produces a ciphertext pair, which is of twice length as the message Its security depends on the difficulty of the DLP in Z p Breaking Diffie-Hellman also implies breaking ElGamal Çetin Kaya Koç Winter / 10

7 ElGamal Cryptosystem Signature Scheme Domain Parameters: The prime p and the generator g of Z p Keys: The private key is the integer x Z p and the public key y is computed as y = g x (mod p) Signing: The User A forms a message m Z p, generates a random number r and computes the signature pair (s 1, s 2 ) s 1 = g r (mod p) s 2 = (m x s 1 ) r 1 (mod p 1) The message and signature consists of [m, s 1, s 2 ] Similar to the encryption case, the size of the signature is twice the size of the message Çetin Kaya Koç Winter / 10

8 ElGamal Cryptosystem Signature Scheme Verifying: The verifier receives the triple [m, c 1, c 2 ] and also has the public key y u 1 = g m (mod p) u 2 = y s1 s s 2 1 (mod p) If u 1 = u 2, then, the signature is valid Proof. The equality u 1 = u 2 implies g m = y s1 s s 2 1 = (g x ) s1 (g r ) s 2 (mod p) according to the Fermat s theorem m = x s 1 + r s 2 (mod p 1) Çetin Kaya Koç Winter / 10

9 ElGamal Cryptosystem Signature Example The parameters: the prime p = 2579 and the generator g = 2, the private key x = 765, and the public key y = 949 We compute the signature pair on the message m = 2013 using the random number r = 999 as s 1 = g r (mod p) = = 1833 (mod 2579) s 2 = (m x s 1 ) r 1 (mod p 1) = ( ) (mod 2578) = = 348 (mod 2578) The message and signature triple is [m, s 1, s 2 ] = [2013, 1833, 348] Çetin Kaya Koç Winter / 10

10 ElGamal Cryptosystem Signature Example The verifier has access to (p, g, y) = (2579, 2, 949) The verifier receives [m, s 1, s 2 ] = [2013, 1833, 348] and computes u 1 = g m (mod p) = (mod 2579) = 713 u 2 = y s1 s s 2 1 (mod p) = (mod 2579) = (mod 2579) = 713 Since u 1 = u 2, the signature is valid Çetin Kaya Koç Winter / 10

Discrete Square Root. Çetin Kaya Koç Winter / 11

Discrete Square Root. Çetin Kaya Koç  Winter / 11 Discrete Square Root Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2017 1 / 11 Discrete Square Root Problem The discrete square root problem is defined as the computation

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

The number theory behind cryptography

The number theory behind cryptography The University of Vermont May 16, 2017 What is cryptography? Cryptography is the practice and study of techniques for secure communication in the presence of adverse third parties. What is cryptography?

More information

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 Name: Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name legibly at the top of this page. No calculators

More information

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 7 Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Cryptography studies techniques for secure communication in the presence of third parties. A typical

More information

Diffie-Hellman key-exchange protocol

Diffie-Hellman key-exchange protocol Diffie-Hellman key-exchange protocol This protocol allows two users to choose a common secret key, for DES or AES, say, while communicating over an insecure channel (with eavesdroppers). The two users

More information

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator.

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator. Lecture 32 Instructor s Comments: This is a make up lecture. You can choose to cover many extra problems if you wish or head towards cryptography. I will probably include the square and multiply algorithm

More information

TMA4155 Cryptography, Intro

TMA4155 Cryptography, Intro Trondheim, December 12, 2006. TMA4155 Cryptography, Intro 2006-12-02 Problem 1 a. We need to find an inverse of 403 modulo (19 1)(31 1) = 540: 540 = 1 403 + 137 = 17 403 50 540 + 50 403 = 67 403 50 540

More information

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh Public-Key Cryptosystem Based on Composite Degree Residuosity Classes aka Paillier Cryptosystem Harmeet Singh Harmeet Singh Winter 2018 1 / 26 Background s Background Foundation of public-key encryption

More information

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1 Cryptography CS 555 Topic 20: Other Public Key Encryption Schemes Topic 20 1 Outline and Readings Outline Quadratic Residue Rabin encryption Goldwasser-Micali Commutative encryption Homomorphic encryption

More information

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete

More information

Public-key Cryptography: Theory and Practice

Public-key Cryptography: Theory and Practice Public-key Cryptography Theory and Practice Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Chapter 5: Cryptographic Algorithms Common Encryption Algorithms RSA

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic and the RSA Public Key Cryptosystem Jeremy R. Johnson 1 Introduction Objective: To understand what a public key cryptosystem is and

More information

EE 418: Network Security and Cryptography

EE 418: Network Security and Cryptography EE 418: Network Security and Cryptography Homework 3 Solutions Assigned: Wednesday, November 2, 2016, Due: Thursday, November 10, 2016 Instructor: Tamara Bonaci Department of Electrical Engineering University

More information

Primitive Roots. Chapter Orders and Primitive Roots

Primitive Roots. Chapter Orders and Primitive Roots Chapter 5 Primitive Roots The name primitive root applies to a number a whose powers can be used to represent a reduced residue system modulo n. Primitive roots are therefore generators in that sense,

More information

CHAPTER 2. Modular Arithmetic

CHAPTER 2. Modular Arithmetic CHAPTER 2 Modular Arithmetic In studying the integers we have seen that is useful to write a = qb + r. Often we can solve problems by considering only the remainder, r. This throws away some of the information,

More information

MAT 302: ALGEBRAIC CRYPTOGRAPHY. Department of Mathematical and Computational Sciences University of Toronto, Mississauga.

MAT 302: ALGEBRAIC CRYPTOGRAPHY. Department of Mathematical and Computational Sciences University of Toronto, Mississauga. MAT 302: ALGEBRAIC CRYPTOGRAPHY Department of Mathematical and Computational Sciences University of Toronto, Mississauga February 27, 2013 Mid-term Exam INSTRUCTIONS: The duration of the exam is 100 minutes.

More information

Simple And Efficient Shuffling With Provable Correctness and ZK Privacy

Simple And Efficient Shuffling With Provable Correctness and ZK Privacy Simple And Efficient Shuffling With Provable Correctness and ZK Privacy Kun Peng, Colin Boyd and Ed Dawson Information Security Institute Queensland University of Technology {k.peng, c.boyd, e.dawson}@qut.edu.au

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013/2014 MODULE: CA642/A Cryptography and Number Theory PROGRAMME(S): MSSF MCM ECSA ECSAO MSc in Security & Forensic Computing M.Sc. in Computing Study

More information

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext Cryptography Codes Lecture 3: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2015 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler New Cipher Times Enemy

More information

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence.

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence. Section 4.4 Linear Congruences Definition: A congruence of the form ax b (mod m), where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence. The solutions

More information

Asynchronous vs. Synchronous Design of RSA

Asynchronous vs. Synchronous Design of RSA vs. Synchronous Design of RSA A. Rezaeinia, V. Fatemi, H. Pedram,. Sadeghian, M. Naderi Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran {rezainia,fatemi,pedram,naderi}@ce.aut.ac.ir

More information

Public Key Encryption

Public Key Encryption Math 210 Jerry L. Kazdan Public Key Encryption The essence of this procedure is that as far as we currently know, it is difficult to factor a number that is the product of two primes each having many,

More information

Solution: Alice tosses a coin and conveys the result to Bob. Problem: Alice can choose any result.

Solution: Alice tosses a coin and conveys the result to Bob. Problem: Alice can choose any result. Example - Coin Toss Coin Toss: Alice and Bob want to toss a coin. Easy to do when they are in the same room. How can they toss a coin over the phone? Mutual Commitments Solution: Alice tosses a coin and

More information

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

MA/CSSE 473 Day 9. The algorithm (modified) N 1

MA/CSSE 473 Day 9. The algorithm (modified) N 1 MA/CSSE 473 Day 9 Primality Testing Encryption Intro The algorithm (modified) To test N for primality Pick positive integers a 1, a 2,, a k < N at random For each a i, check for a N 1 i 1 (mod N) Use the

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

Cryptography, Number Theory, and RSA

Cryptography, Number Theory, and RSA Cryptography, Number Theory, and RSA Joan Boyar, IMADA, University of Southern Denmark November 2015 Outline Symmetric key cryptography Public key cryptography Introduction to number theory RSA Modular

More information

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext Cryptography Codes Lecture 4: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler New Cipher Times Enemy

More information

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers);

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers); 18.310 lecture notes September 2, 2013 Cryptography Lecturer: Michel Goemans 1 Public Key Cryptosystems In these notes, we will be concerned with constructing secret codes. A sender would like to encrypt

More information

Number Theory and Public Key Cryptography Kathryn Sommers

Number Theory and Public Key Cryptography Kathryn Sommers Page!1 Math 409H Fall 2016 Texas A&M University Professor: David Larson Introduction Number Theory and Public Key Cryptography Kathryn Sommers Number theory is a very broad and encompassing subject. At

More information

Exploring Signature Schemes with Subliminal Channel

Exploring Signature Schemes with Subliminal Channel SCIS 2003 The 2003 Symposium on Cryptography and Information Security Hamamatsu,Japan, Jan.26-29,2003 The Institute of Electronics, Information and Communication Engineers Exploring Signature Schemes with

More information

Cryptography s Application in Numbers Station

Cryptography s Application in Numbers Station Cryptography s Application in Numbers Station Jacqueline - 13512074 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

More information

Classical Cryptography

Classical Cryptography Classical Cryptography CS 6750 Lecture 1 September 10, 2009 Riccardo Pucella Goals of Classical Cryptography Alice wants to send message X to Bob Oscar is on the wire, listening to all communications Alice

More information

DTTF/NB479: Dszquphsbqiz Day 30

DTTF/NB479: Dszquphsbqiz Day 30 DTTF/NB479: Dszquphsbqiz Day 30 Announcements: Questions? This week: Digital signatures, DSA Coin flipping over the phone RSA Signatures allow you to recover the message from the signature; ElGamal signatures

More information

Triple-DES Block of 96 Bits: An Application to. Colour Image Encryption

Triple-DES Block of 96 Bits: An Application to. Colour Image Encryption Applied Mathematical Sciences, Vol. 7, 2013, no. 23, 1143-1155 HIKARI Ltd, www.m-hikari.com Triple-DES Block of 96 Bits: An Application to Colour Image Encryption V. M. Silva-García Instituto politécnico

More information

EE 418 Network Security and Cryptography Lecture #3

EE 418 Network Security and Cryptography Lecture #3 EE 418 Network Security and Cryptography Lecture #3 October 6, 2016 Classical cryptosystems. Lecture notes prepared by Professor Radha Poovendran. Tamara Bonaci Department of Electrical Engineering University

More information

Chapter 4 The Data Encryption Standard

Chapter 4 The Data Encryption Standard Chapter 4 The Data Encryption Standard History of DES Most widely used encryption scheme is based on DES adopted by National Bureau of Standards (now National Institute of Standards and Technology) in

More information

Principles of Ad Hoc Networking

Principles of Ad Hoc Networking Principles of Ad Hoc Networking Michel Barbeau and Evangelos Kranakis November 12, 2007 Wireless security challenges Network type Wireless Mobility Ad hoc Sensor Challenge Open medium Handover implies

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013 MODULE: (Title & Code) CA642 Cryptography and Number Theory COURSE: M.Sc. in Security and Forensic Computing YEAR: 1 EXAMINERS: (Including Telephone

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Secure Localization Using Elliptic Curve Cryptography in Wireless Sensor Networks

Secure Localization Using Elliptic Curve Cryptography in Wireless Sensor Networks IJCSNS International Journal of Computer Science and Network Security, VOL. No.6, June 55 Secure Localization Using Elliptic Curve Cryptography in Wireless Sensor Networks Summary The crucial problem in

More information

Network Security: Secret Key Cryptography

Network Security: Secret Key Cryptography 1 Network Security: Secret Key Cryptography Henning Schulzrinne Columbia University, New York schulzrinne@cs.columbia.edu Columbia University, Fall 2000 cfl1999-2000, Henning Schulzrinne Last modified

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number.

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. (PT.1) If a number m of the form m = 2 n 1, where n N, is a Mersenne number. If a Mersenne number m is also a

More information

Journal of Discrete Mathematical Sciences & Cryptography Vol. ( ), No., pp. 1 10

Journal of Discrete Mathematical Sciences & Cryptography Vol. ( ), No., pp. 1 10 Dynamic extended DES Yi-Shiung Yeh 1, I-Te Chen 2, Ting-Yu Huang 1, Chan-Chi Wang 1, 1 Department of Computer Science and Information Engineering National Chiao-Tung University 1001 Ta-Hsueh Road, HsinChu

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 213 http://acousticalsociety.org/ ICA 213 Montreal Montreal, Canada 2-7 June 213 Signal Processing in Acoustics Session 2pSP: Acoustic Signal Processing

More information

Block Ciphers Security of block ciphers. Symmetric Ciphers

Block Ciphers Security of block ciphers. Symmetric Ciphers Lecturers: Mark D. Ryan and David Galindo. Cryptography 2016. Slide: 26 Assume encryption and decryption use the same key. Will discuss how to distribute key to all parties later Symmetric ciphers unusable

More information

Cryptanalysis of Ladder-DES

Cryptanalysis of Ladder-DES Cryptanalysis of Ladder-DES Computer Science Department Technion - srael nstitute of Technology Haifa 32000, srael Email: biham@cs.technion, ac.il WWW: http://www.cs.technion.ac.il/-biham/ Abstract. Feistel

More information

CS 261 Notes: Zerocash

CS 261 Notes: Zerocash CS 261 Notes: Zerocash Scribe: Lynn Chua September 19, 2018 1 Introduction Zerocash is a cryptocurrency which allows users to pay each other directly, without revealing any information about the parties

More information

DES Data Encryption standard

DES Data Encryption standard DES Data Encryption standard DES was developed by IBM as a modification of an earlier system Lucifer DES was adopted as a standard in 1977 Was replaced only in 2001 with AES (Advanced Encryption Standard)

More information

אני יודע מה עשית בפענוח האחרון: התקפות ערוצי צד על מחשבים אישיים

אני יודע מה עשית בפענוח האחרון: התקפות ערוצי צד על מחשבים אישיים אני יודע מה עשית בפענוח האחרון: התקפות ערוצי צד על מחשבים אישיים I Know What You Did Last Decryption: Side Channel Attacks on PCs Lev Pachmanov Tel Aviv University Daniel Genkin Technion and Tel Aviv University

More information

MA 111, Topic 2: Cryptography

MA 111, Topic 2: Cryptography MA 111, Topic 2: Cryptography Our next topic is something called Cryptography, the mathematics of making and breaking Codes! In the most general sense, Cryptography is the mathematical ideas behind changing

More information

A Design for Modular Exponentiation Coprocessor in Mobile Telecommunication Terminals

A Design for Modular Exponentiation Coprocessor in Mobile Telecommunication Terminals A Design for Modular Exponentiation Coprocessor in Mobile Telecommunication Terminals Takehiko Kato, Satoru Ito, Jun Anzai, and Natsume Matsuzaki Advanced Mobile Telecommunications Security Technology

More information

Secure Distributed Computation on Private Inputs

Secure Distributed Computation on Private Inputs Secure Distributed Computation on Private Inputs David Pointcheval ENS - CNRS - INRIA Foundations & Practice of Security Clermont-Ferrand, France - October 27th, 2015 The Cloud David Pointcheval Introduction

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

Self-Scrambling Anonymizer. Overview

Self-Scrambling Anonymizer. Overview Financial Cryptography 2000 21-25 february 2000 - Anguilla Self-Scrambling Anonymizers Département d Informatique ENS - CNRS David.Pointcheval@ens.fr http://www.di.ens.fr/~pointche Overview Introduction

More information

Automated Analysis and Synthesis of Block-Cipher Modes of Operation

Automated Analysis and Synthesis of Block-Cipher Modes of Operation Automated Analysis and Synthesis of Block-Cipher Modes of Operation Alex J. Malozemoff 1 Jonathan Katz 1 Matthew D. Green 2 1 University of Maryland 2 Johns Hopkins University Presented at the Fall Protocol

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

1 Introduction to Cryptology

1 Introduction to Cryptology U R a Scientist (CWSF-ESPC 2017) Mathematics and Cryptology Patrick Maidorn and Michael Kozdron (Department of Mathematics & Statistics) 1 Introduction to Cryptology While the phrase making and breaking

More information

Lecture Notes in Computer Science,

Lecture Notes in Computer Science, JAIST Reposi https://dspace. Title A Multisignature Scheme with Message Order Flexibility and Order Verifiab Author(s)Mitomi, Shirow; Miyai, Atsuko Citation Lecture Notes in Computer Science, 298-32 Issue

More information

Problem Set 6 Solutions Math 158, Fall 2016

Problem Set 6 Solutions Math 158, Fall 2016 All exercise numbers from the textbook refer to the second edition. 1. (a) Textbook exercise 3.3 (this shows, as we mentioned in class, that RSA decryption always works when the modulus is a product of

More information

A Second-price Sealed-bid Auction wi Discriminant of the p_<0>-th Root. Author(s)Omote, Kazumasa; Miyaji, Atsuko. Financial cryptography : 6th Interna

A Second-price Sealed-bid Auction wi Discriminant of the p_<0>-th Root. Author(s)Omote, Kazumasa; Miyaji, Atsuko. Financial cryptography : 6th Interna JAIST Reposi https://dspace.j Title A Second-price Sealed-bid Auction wi Discriminant of the p_-th Root Author(s)Omote, Kazumasa; Miyaji, Atsuko Citation Lecture Notes in Computer Science, 2 71 Issue

More information

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson TITLE PAGE FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SEAT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense) INSTRUCTIONS TO STUDENTS: This is

More information

Identity-based multisignature with message recovery

Identity-based multisignature with message recovery University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2013 Identity-based multisignature with message

More information

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

Application: Public Key Cryptography. Public Key Cryptography

Application: Public Key Cryptography. Public Key Cryptography Application: Public Key Cryptography Suppose I wanted people to send me secret messages by snail mail Method 0. I send a padlock, that only I have the key to, to everyone who might want to send me a message.

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method Exercises Exercises 1. Show that 15 is an inverse of 7 modulo 26. 2. Show that 937 is an inverse of 13 modulo 2436. 3. By inspection (as discussed prior to Example 1), find an inverse of 4 modulo 9. 4.

More information

Signatures for Network Coding

Signatures for Network Coding Conference on Random network codes and Designs over F q Signatures for Network Coding Oliver Gnilke, Claude-Shannon-Institute, University College Dublin 18. September 2013 1 / 14 Network Coding Signature

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mar Zhandry Princeton University Spring 2017 Announcements Homewor 3 due tomorrow Homewor 4 up Tae- home midterm tentative dates: Posted 3pm am Monday 3/13 Due 1pm Wednesday

More information

A Public Shuffle without Private Permutations

A Public Shuffle without Private Permutations A Public Shuffle without Private Permutations Myungsun Kim, Jinsu Kim, and Jung Hee Cheon Dep. of Mathematical Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea {msunkim,kjs2002,jhcheon}@snu.ac.kr

More information

Towards a Cryptanalysis of Scrambled Spectral-Phase Encoded OCDMA

Towards a Cryptanalysis of Scrambled Spectral-Phase Encoded OCDMA Towards a Cryptanalysis of Scrambled Spectral-Phase Encoded OCDMA Sharon Goldberg* Ron Menendez **, Paul R. Prucnal* *, **Telcordia Technologies OFC 27, Anaheim, CA, March 29, 27 Secret key Security for

More information

Xor. Isomorphisms. CS70: Lecture 9. Outline. Is public key crypto possible? Cryptography... Public key crypography.

Xor. Isomorphisms. CS70: Lecture 9. Outline. Is public key crypto possible? Cryptography... Public key crypography. CS70: Lecture 9. Outline. 1. Public Key Cryptography 2. RSA system 2.1 Efficiency: Repeated Squaring. 2.2 Correctness: Fermat s Theorem. 2.3 Construction. 3. Warnings. Cryptography... m = D(E(m,s),s) Alice

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let m and n be two relatively prime positive integers. Let a and b be any two integers. Then the two congruences x a (mod m) x b (mod n) have common solutions. Any

More information

Chapter 4 MASK Encryption: Results with Image Analysis

Chapter 4 MASK Encryption: Results with Image Analysis 95 Chapter 4 MASK Encryption: Results with Image Analysis This chapter discusses the tests conducted and analysis made on MASK encryption, with gray scale and colour images. Statistical analysis including

More information

Cryptography. Module in Autumn Term 2016 University of Birmingham. Lecturers: Mark D. Ryan and David Galindo

Cryptography. Module in Autumn Term 2016 University of Birmingham. Lecturers: Mark D. Ryan and David Galindo Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 1 Cryptography Module in Autumn Term 2016 University of Birmingham Lecturers: Mark D. Ryan and David Galindo Slides originally written

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let n 1,..., n r be r positive integers relatively prime in pairs. (That is, gcd(n i, n j ) = 1 whenever 1 i < j r.) Let a 1,..., a r be any r integers. Then the

More information

Number Theory and Security in the Digital Age

Number Theory and Security in the Digital Age Number Theory and Security in the Digital Age Lola Thompson Ross Program July 21, 2010 Lola Thompson (Ross Program) Number Theory and Security in the Digital Age July 21, 2010 1 / 37 Introduction I have

More information

Andrei Sabelfeld. Joint work with Per Hallgren and Martin Ochoa

Andrei Sabelfeld. Joint work with Per Hallgren and Martin Ochoa Andrei Sabelfeld Joint work with Per Hallgren and Martin Ochoa Privacy for location based services Explosion of interest to location based services (LBS) locating people, vehicles, vessels, cargo, devices

More information

LECTURE NOTES ON SUBLIMINAL CHANNEL & COMMUNICATION SYSTEM

LECTURE NOTES ON SUBLIMINAL CHANNEL & COMMUNICATION SYSTEM Department of Software The University of Babylon LECTURE NOTES ON SUBLIMINAL CHANNEL & COMMUNICATION SYSTEM By Dr. Samaher Hussein Ali College of Information Technology, University of Babylon, Iraq Samaher_hussein@yahoo.com

More information

RSA hybrid encryption schemes

RSA hybrid encryption schemes RSA hybrid encryption schemes Louis Granboulan École Normale Supérieure Louis.Granboulan@ens.fr Abstract. This document compares the two published RSA-based hybrid encryption schemes having linear reduction

More information

Cryptanalysis on short messages encrypted with M-138 cipher machine

Cryptanalysis on short messages encrypted with M-138 cipher machine Cryptanalysis on short messages encrypted with M-138 cipher machine Tsonka Baicheva Miroslav Dimitrov Institute of Mathematics and Informatics Bulgarian Academy of Sciences 10-14 July, 2017 Sofia Introduction

More information

L29&30 - RSA Cryptography

L29&30 - RSA Cryptography L29&30 - RSA Cryptography CSci/Math 2112 20&22 July 2015 1 / 13 Notation We write a mod n for the integer b such that 0 b < n and a b (mod n). 2 / 13 Calculating Large Powers Modulo n Example 1 What is

More information

Information Security Theory vs. Reality

Information Security Theory vs. Reality Information Security Theory vs. Reality 0368-4474, Winter 2015-2016 Lecture 6: Physical Side Channel Attacks on PCs Guest lecturer: Lev Pachmanov 1 Side channel attacks probing CPU architecture optical

More information

Stream Ciphers And Pseudorandomness Revisited. Table of contents

Stream Ciphers And Pseudorandomness Revisited. Table of contents Stream Ciphers And Pseudorandomness Revisited Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Stream Ciphers Stream ciphers & pseudorandom

More information

Collision-based Power Analysis of Modular Exponentiation Using Chosen-message Pairs

Collision-based Power Analysis of Modular Exponentiation Using Chosen-message Pairs Collision-based Analysis of Modular Exponentiation Using Chosen-message Pairs Naofumi Homma 1, Atsushi Miyamoto 1, Takafumi Aoki 1, Akashi atoh 2, and Adi hamir 3 1 Graduate chool of Information ciences,

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

Introduction to Cryptography CS 355

Introduction to Cryptography CS 355 Introduction to Cryptography CS 355 Lecture 25 Mental Poker And Semantic Security CS 355 Fall 2005 / Lecture 25 1 Lecture Outline Review of number theory The Mental Poker Protocol Semantic security Semantic

More information

Merkle s Puzzles. c Eli Biham - May 3, Merkle s Puzzles (8)

Merkle s Puzzles. c Eli Biham - May 3, Merkle s Puzzles (8) Merkle s Puzzles See: Merkle, Secrecy, Authentication, and Public Key Systems, UMI Research press, 1982 Merkle, Secure Communications Over Insecure Channels, CACM, Vol. 21, No. 4, pp. 294-299, April 1978

More information

Sequential Aggregate Signatures from Trapdoor Permutations

Sequential Aggregate Signatures from Trapdoor Permutations Sequential Aggregate Signatures from Trapdoor Permutations Anna Lysyanskaya anna@cs.brown.edu Silvio Micali Hovav Shacham hovav@cs.stanford.edu Leonid Reyzin reyzin@cs.bu.edu Abstract An aggregate signature

More information

A New Chaotic Secure Communication System

A New Chaotic Secure Communication System 1306 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 51, NO 8, AUGUST 2003 A New Chaotic Secure Communication System Zhengguo Li, Kun Li, Changyun Wen, and Yeng Chai Soh Abstract This paper proposes a digital

More information

OFDM Based Low Power Secured Communication using AES with Vedic Mathematics Technique for Military Applications

OFDM Based Low Power Secured Communication using AES with Vedic Mathematics Technique for Military Applications OFDM Based Low Power Secured Communication using AES with Vedic Mathematics Technique for Military Applications Elakkiya.V 1, Sharmila.S 2, Swathi Priya A.S 3, Vinodha.K 4 1,2,3,4 Department of Electronics

More information

High-Speed RSA Crypto-Processor with Radix-4 4 Modular Multiplication and Chinese Remainder Theorem

High-Speed RSA Crypto-Processor with Radix-4 4 Modular Multiplication and Chinese Remainder Theorem High-Speed RSA Crypto-Processor with Radix-4 4 Modular Multiplication and Chinese Remainder Theorem Bonseok Koo 1, Dongwook Lee 1, Gwonho Ryu 1, Taejoo Chang 1 and Sangjin Lee 2 1 Nat (NSRI), Korea 2 Center

More information

Successful Implementation of the Hill and Magic Square Ciphers: A New Direction

Successful Implementation of the Hill and Magic Square Ciphers: A New Direction Successful Implementation of the Hill and Magic Square Ciphers: A New Direction ISSN:319-7900 Tomba I. : Dept. of Mathematics, Manipur University, Imphal, Manipur (INDIA) Shibiraj N, : Research Scholar

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic 1 Integers modulo n 1.1 Preliminaries Introduction to Modular Arithmetic Definition 1.1.1 (Equivalence relation). Let R be a relation on the set A. Recall that a relation R is a subset of the cartesian

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

Generic Attacks on Feistel Schemes

Generic Attacks on Feistel Schemes Generic Attacks on Feistel Schemes -Extended Version- Jacques Patarin PRiSM, University of Versailles, 45 av. des États-Unis, 78035 Versailles Cedex, France This paper is the extended version of the paper

More information

Drill Time: Remainders from Long Division

Drill Time: Remainders from Long Division Drill Time: Remainders from Long Division Example (Drill Time: Remainders from Long Division) Get some practice finding remainders. Use your calculator (if you want) then check your answers with a neighbor.

More information

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m.

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m. Great Theoretical Ideas In Computer Science Steven Rudich CS - Spring Lecture Feb, Carnegie Mellon University Modular Arithmetic and the RSA Cryptosystem p- p MAX(a,b) + MIN(a,b) = a+b n m means that m

More information