Generalized Permutations and The Multinomial Theorem

Size: px
Start display at page:

Download "Generalized Permutations and The Multinomial Theorem"

Transcription

1 Generalized Permutations and The Multinomial Theorem 1 / 19

2 Overview The Binomial Theorem Generalized Permutations The Multinomial Theorem Circular and Ring Permutations 2 / 19

3 Outline The Binomial Theorem Generalized Permutations The Multinomial Theorem Circular and Ring Permutations 3 / 19

4 The Binomial Theorem Theorem (x + y) n = n [ C(n, r) x n r y r] r=0 4 / 19

5 Binary Sequences Count the number of binary sequences of length n in two different ways. 5 / 19

6 Outline The Binomial Theorem Generalized Permutations The Multinomial Theorem Circular and Ring Permutations 6 / 19

7 Generalized Permutations Definition Let X be a set of n not necessarily distinct objects belonging to k different nonempty groups such that 1. all the objects in a group are identical 2. an object in a group is not identical to an object in another group. A generalized permutation of X is an arrangement in a row of the n objects of X. Anagrams are generalized permutations. A famous contemporary example: IAMLORDVOLDEMORT TOMMARVOLORIDDLE 7 / 19

8 The Number of Anagrams Theorem If the set X of n objects consists of k different nonempty groups such that group i has n i identical objects for 1 i k, then the number of generalized permutations of X is n! (n 1!)(n 2!) (n k!). [anagram tool] Example Determine the number of generalized permutations of the 5 letters that appear in the word LEMMA. 8 / 19

9 The Number of Anagrams Theorem If the set X of n objects consists of k different nonempty groups such that group i has n i identical objects for 1 i k, then the number of generalized permutations of X is n! (n 1!)(n 2!) (n k!). [anagram tool] Example Determine the number of generalized permutations of the 6 letters that appear in the word TSETSE. 9 / 19

10 Some Identities Definition P(n; n 1, n 2,..., n k ) := P(n,n 1+ +n k ) (n 1!)(n 2!) (n k!) Proposition We have the following combinatorial identities: 1. P(n; r) = P(n; n r) = P(n; r, n r) 2. P(n; r) = P(n,r) r!. 10 / 19

11 The Allocation Interpretation of Generalized Permutations Theorem If there are n i identical objects in group i for 1 i k and if r = n n k is the total number of the objects in these k groups, then these r objects can be placed in n distinct locations so that each location receives at most one object in P(n; n 1, n 2,..., n k ) ways. In particular, if each group has exactly one object, then this number of allocations is P(n, r). 11 / 19

12 Outline The Binomial Theorem Generalized Permutations The Multinomial Theorem Circular and Ring Permutations 12 / 19

13 The Multinomial Theorem Theorem In a typical term of the expansion of (x 1 + x x k ) n the variable x i appears n i times (where n 1 + n n k = n) and the coefficient of this typical term is P(n; n 1, n 2,..., n k ) = n! (n 1!)(n 2!) (n k!). 13 / 19

14 Outline The Binomial Theorem Generalized Permutations The Multinomial Theorem Circular and Ring Permutations 14 / 19

15 Circular Permutations Circular permutations are a variant of the r-permutations of a set X of n distinct elements we have been considering. Suppose that we now assume that two permutations are the same provided that one can be obtained from the other by cycling. For example, the 3-permutations of the set X = {A, B, C} given by ABC, CAB, and BCA are the same when considered as circular permutations. 15 / 19

16 Circular Permutations Circular permutations are a variant of the r-permutations of a set X of n distinct elements we have been considering. Suppose that we now assume that two permutations are the same provided that one can be obtained from the other by cycling. For example, the 3-permutations of the set X = {A, B, C} given by ABC, CAB, and BCA are the same when considered as circular permutations. Proposition The number of circular permutations of a set of n elements is P(n, n) n = (n 1)!. 16 / 19

17 Ring Permutations Supposing that two permutations are the same provided that one can be obtained from the other by cycling or by mirror reversal, we obtain the notion of a ring permutation. For example, the 3-permutations of the set X = {A, B, C} given by ABC, CAB, BCA, CBA, BAC, and ACB are the same when considered as ring permutations. 17 / 19

18 Ring Permutations Supposing that two permutations are the same provided that one can be obtained from the other by cycling or by mirror reversal, we obtain the notion of a ring permutation. For example, the 3-permutations of the set X = {A, B, C} given by ABC, CAB, BCA, CBA, BAC, and ACB are the same when considered as ring permutations. Proposition The number of ring permutations of a set of n elements is 1 P(n, n) 2 n = (n 1)! / 19

19 Acknowledgements Statements of results follow the notation and wording of Balakrishnan s Introductory Discrete Mathematics. Some examples follow Rosen s Discrete Mathematics and Its Applications. 19 / 19

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.2 Possibility Trees and the Multiplication Rule Copyright Cengage Learning. All rights reserved. Possibility

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

Section Summary. Permutations Combinations Combinatorial Proofs

Section Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Section Summary Permutations Combinations Combinatorial Proofs Permutations Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement

More information

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n Chapter 5 Chapter Summary 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.5 Generalized Permutations and Combinations Section 5.1 The Product Rule The Product

More information

Permutations And Combinations Questions Answers

Permutations And Combinations Questions Answers We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with permutations and combinations

More information

Well, there are 6 possible pairs: AB, AC, AD, BC, BD, and CD. This is the binomial coefficient s job. The answer we want is abbreviated ( 4

Well, there are 6 possible pairs: AB, AC, AD, BC, BD, and CD. This is the binomial coefficient s job. The answer we want is abbreviated ( 4 2 More Counting 21 Unordered Sets In counting sequences, the ordering of the digits or letters mattered Another common situation is where the order does not matter, for example, if we want to choose a

More information

Case 1: If Denver is the first city visited, then the outcome looks like: ( D ).

Case 1: If Denver is the first city visited, then the outcome looks like: ( D ). 2.37. (a) Think of each city as an object. Each one is distinct. Therefore, there are 6! = 720 different itineraries. (b) Envision the process of selecting an itinerary as a random experiment with sample

More information

Sec$on Summary. Permutations Combinations Combinatorial Proofs

Sec$on Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Sec$on Summary Permutations Combinations Combinatorial Proofs 2 Coun$ng ordered arrangements Ex: How many ways can we select 3 students from a group of 5 students to stand in line for a picture?

More information

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6 CS100: DISCRETE STRUCTURES Lecture 8 Counting - CH6 Lecture Overview 2 6.1 The Basics of Counting: THE PRODUCT RULE THE SUM RULE THE SUBTRACTION RULE THE DIVISION RULE 6.2 The Pigeonhole Principle. 6.3

More information

In this section, we will learn to. 1. Use the Multiplication Principle for Events. Cheesecake Factory. Outback Steakhouse. P.F. Chang s.

In this section, we will learn to. 1. Use the Multiplication Principle for Events. Cheesecake Factory. Outback Steakhouse. P.F. Chang s. Section 10.6 Permutations and Combinations 10-1 10.6 Permutations and Combinations In this section, we will learn to 1. Use the Multiplication Principle for Events. 2. Solve permutation problems. 3. Solve

More information

HOMEWORK ASSIGNMENT 5

HOMEWORK ASSIGNMENT 5 HOMEWORK ASSIGNMENT 5 MATH 251, WILLIAMS COLLEGE, FALL 2006 Abstract. These are the instructor s solutions. 1. Big Brother The social security number of a person is a sequence of nine digits that are not

More information

MTH 245: Mathematics for Management, Life, and Social Sciences

MTH 245: Mathematics for Management, Life, and Social Sciences 1/1 MTH 245: Mathematics for Management, Life, and Social Sciences Sections 5.5 and 5.6. Part 1 Permutation and combinations. Further counting techniques 2/1 Given a set of n distinguishable objects. Definition

More information

Strings. A string is a list of symbols in a particular order.

Strings. A string is a list of symbols in a particular order. Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 1-12 is a string of integers. X Q R A X P T is a

More information

6/24/14. The Poker Manipulation. The Counting Principle. MAFS.912.S-IC.1: Understand and evaluate random processes underlying statistical experiments

6/24/14. The Poker Manipulation. The Counting Principle. MAFS.912.S-IC.1: Understand and evaluate random processes underlying statistical experiments The Poker Manipulation Unit 5 Probability 6/24/14 Algebra 1 Ins1tute 1 6/24/14 Algebra 1 Ins1tute 2 MAFS. 7.SP.3: Investigate chance processes and develop, use, and evaluate probability models MAFS. 7.SP.3:

More information

With Question/Answer Animations. Chapter 6

With Question/Answer Animations. Chapter 6 With Question/Answer Animations Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and

More information

Objectives: Permutations. Fundamental Counting Principle. Fundamental Counting Principle. Fundamental Counting Principle

Objectives: Permutations. Fundamental Counting Principle. Fundamental Counting Principle. Fundamental Counting Principle and Objectives:! apply fundamental counting principle! compute permutations! compute combinations HL2 Math - Santowski! distinguish permutations vs combinations can be used determine the number of possible

More information

Discrete Structures Lecture Permutations and Combinations

Discrete Structures Lecture Permutations and Combinations Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

More information

Lecture 18 - Counting

Lecture 18 - Counting Lecture 18 - Counting 6.0 - April, 003 One of the most common mathematical problems in computer science is counting the number of elements in a set. This is often the core difficulty in determining a program

More information

CSE 312: Foundations of Computing II Quiz Section #2: Combinations, Counting Tricks (solutions)

CSE 312: Foundations of Computing II Quiz Section #2: Combinations, Counting Tricks (solutions) CSE 312: Foundations of Computing II Quiz Section #2: Combinations, Counting Tricks (solutions Review: Main Theorems and Concepts Combinations (number of ways to choose k objects out of n distinct objects,

More information

Math Steven Noble. November 22nd. Steven Noble Math 3790

Math Steven Noble. November 22nd. Steven Noble Math 3790 Math 3790 Steven Noble November 22nd Basic ideas of combinations and permutations Simple Addition. If there are a varieties of soup and b varieties of salad then there are a + b possible ways to order

More information

Probability. Engr. Jeffrey T. Dellosa.

Probability. Engr. Jeffrey T. Dellosa. Probability Engr. Jeffrey T. Dellosa Email: jtdellosa@gmail.com Outline Probability 2.1 Sample Space 2.2 Events 2.3 Counting Sample Points 2.4 Probability of an Event 2.5 Additive Rules 2.6 Conditional

More information

Topics to be covered

Topics to be covered Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

More information

CS1800: Permutations & Combinations. Professor Kevin Gold

CS1800: Permutations & Combinations. Professor Kevin Gold CS1800: Permutations & Combinations Professor Kevin Gold Permutations A permutation is a reordering of something. In the context of counting, we re interested in the number of ways to rearrange some items.

More information

Counting. Chapter 6. With Question/Answer Animations

Counting. Chapter 6. With Question/Answer Animations . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Counting Chapter

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Permutations. and. Combinations

Permutations. and. Combinations Permutations and Combinations Fundamental Counting Principle Fundamental Counting Principle states that if an event has m possible outcomes and another independent event has n possible outcomes, then there

More information

Sec 5.1 The Basics of Counting

Sec 5.1 The Basics of Counting 1 Sec 5.1 The Basics of Counting Combinatorics, the study of arrangements of objects, is an important part of discrete mathematics. In this chapter, we will learn basic techniques of counting which has

More information

Mathematics Probability: Combinations

Mathematics Probability: Combinations a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Probability: Combinations Science and Mathematics Education Research Group Supported by UBC Teaching

More information

Chapter 10A. a) How many labels for Product A are required? Solution: ABC ACB BCA BAC CAB CBA. There are 6 different possible labels.

Chapter 10A. a) How many labels for Product A are required? Solution: ABC ACB BCA BAC CAB CBA. There are 6 different possible labels. Chapter 10A The Addition rule: If there are n ways of performing operation A and m ways of performing operation B, then there are n + m ways of performing A or B. Note: In this case or means to add. Eg.

More information

Course Learning Outcomes for Unit V

Course Learning Outcomes for Unit V UNIT V STUDY GUIDE Counting Reading Assignment See information below. Key Terms 1. Combination 2. Fundamental counting principle 3. Listing 4. Permutation 5. Tree diagrams Course Learning Outcomes for

More information

11.3B Warmup. 1. Expand: 2x. 2. Express the expansion of 2x. using combinations. 3. Simplify: a 2b a 2b

11.3B Warmup. 1. Expand: 2x. 2. Express the expansion of 2x. using combinations. 3. Simplify: a 2b a 2b 11.3 Warmup 1. Expand: 2x y 4 2. Express the expansion of 2x y 4 using combinations. 3 3 3. Simplify: a 2b a 2b 4. How many terms are there in the expansion of 2x y 15? 5. What would the 10 th term in

More information

W = {Carrie (U)nderwood, Kelly (C)larkson, Chris (D)aughtry, Fantasia (B)arrino, and Clay (A)iken}

W = {Carrie (U)nderwood, Kelly (C)larkson, Chris (D)aughtry, Fantasia (B)arrino, and Clay (A)iken} UNIT V STUDY GUIDE Counting Course Learning Outcomes for Unit V Upon completion of this unit, students should be able to: 1. Apply mathematical principles used in real-world situations. 1.1 Draw tree diagrams

More information

Staircase Rook Polynomials and Cayley s Game of Mousetrap

Staircase Rook Polynomials and Cayley s Game of Mousetrap Staircase Rook Polynomials and Cayley s Game of Mousetrap Michael Z. Spivey Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington 98416-1043 USA mspivey@ups.edu Phone:

More information

Permutations and Combinations. Quantitative Aptitude & Business Statistics

Permutations and Combinations. Quantitative Aptitude & Business Statistics Permutations and Combinations Statistics The Fundamental Principle of If there are Multiplication n 1 ways of doing one operation, n 2 ways of doing a second operation, n 3 ways of doing a third operation,

More information

12.1 The Fundamental Counting Principle and Permutations

12.1 The Fundamental Counting Principle and Permutations 12.1 The Fundamental Counting Principle and Permutations The Fundamental Counting Principle Two Events: If one event can occur in ways and another event can occur in ways then the number of ways both events

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Review Questions Multiple Choice Questions for Review 1. Suppose there are 12 students, among whom are three students, M, B, C (a Math Major, a Biology Major, a Computer Science Major. We want to send

More information

JIGSAW ACTIVITY, TASK # Make sure your answer in written in the correct order. Highest powers of x should come first, down to the lowest powers.

JIGSAW ACTIVITY, TASK # Make sure your answer in written in the correct order. Highest powers of x should come first, down to the lowest powers. JIGSAW ACTIVITY, TASK #1 Your job is to multiply and find all the terms in ( 1) Recall that this means ( + 1)( + 1)( + 1)( + 1) Start by multiplying: ( + 1)( + 1) x x x x. x. + 4 x x. Write your answer

More information

The Fundamental Counting Principle & Permutations

The Fundamental Counting Principle & Permutations The Fundamental Counting Principle & Permutations POD: You have 7 boxes and 10 balls. You put the balls into the boxes. How many boxes have more than one ball? Why do you use a fundamental counting principal?

More information

Introduction to Combinatorial Mathematics

Introduction to Combinatorial Mathematics Introduction to Combinatorial Mathematics George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 300 George Voutsadakis (LSSU) Combinatorics April 2016 1 / 97

More information

Greedy Flipping of Pancakes and Burnt Pancakes

Greedy Flipping of Pancakes and Burnt Pancakes Greedy Flipping of Pancakes and Burnt Pancakes Joe Sawada a, Aaron Williams b a School of Computer Science, University of Guelph, Canada. Research supported by NSERC. b Department of Mathematics and Statistics,

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations NAME: 1.) There are five people, Abby, Bob, Cathy, Doug, and Edgar, in a room. How many ways can we line up three of them to receive 1 st, 2 nd, and 3 rd place prizes? The

More information

Exercises Exercises. 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}?

Exercises Exercises. 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}? Exercises Exercises 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}? 3. How many permutations of {a, b, c, d, e, f, g} end with

More information

TImath.com. Statistics. Too Many Choices!

TImath.com. Statistics. Too Many Choices! Too Many Choices! ID: 11762 Time required 40 minutes Activity Overview In this activity, students will investigate the fundamental counting principle, permutations, and combinations. They will find the

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University September 30, 2017 Xin Ma (TAMU) Math 166 September 30, 2017 1 / 11 Last Time Factorials For any natural number n, we define

More information

n! = n(n 1)(n 2) 3 2 1

n! = n(n 1)(n 2) 3 2 1 A Counting A.1 First principles If the sample space Ω is finite and the outomes are equally likely, then the probability measure is given by P(E) = E / Ω where E denotes the number of outcomes in the event

More information

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION

Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION Name: Period: Date: NON-CALCULATOR SECTION Vocabulary: Define each word and give an example. 1. discrete mathematics 2. dependent outcomes 3. series Short Answer: 4. Describe when to use a combination.

More information

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap European Journal of Combinatorics 30 (2009) 532 539 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Staircase rook polynomials

More information

Fundamental Counting Principle

Fundamental Counting Principle Lesson 88 Probability with Combinatorics HL2 Math - Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more

More information

Permutations and Combinations

Permutations and Combinations Motivating question Permutations and Combinations A) Rosen, Chapter 5.3 B) C) D) Permutations A permutation of a set of distinct objects is an ordered arrangement of these objects. : (1, 3, 2, 4) is a

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions)

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) CSE 31: Foundations of Computing II Quiz Section #: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n

More information

Permutations and Combinations Section

Permutations and Combinations Section A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Permutations and Combinations Section 13.3-13.4 Dr. John Ehrke Department of Mathematics Fall 2012 Permutations A permutation

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations Rosen, Chapter 5.3 Motivating question In a family of 3, how many ways can we arrange the members of the family in a line for a photograph? 1 Permutations A permutation of

More information

Purpose of Section To introduce some basic tools of counting, such as the multiplication principle, permutations and combinations.

Purpose of Section To introduce some basic tools of counting, such as the multiplication principle, permutations and combinations. 1 Section 2.3 Purpose of Section To introduce some basic tools of counting, such as the multiplication principle, permutations and combinations. Introduction If someone asks you a question that starts

More information

Permutation Groups. Definition and Notation

Permutation Groups. Definition and Notation 5 Permutation Groups Wigner s discovery about the electron permutation group was just the beginning. He and others found many similar applications and nowadays group theoretical methods especially those

More information

Sec.on Summary. The Product Rule The Sum Rule The Subtraction Rule (Principle of Inclusion- Exclusion)

Sec.on Summary. The Product Rule The Sum Rule The Subtraction Rule (Principle of Inclusion- Exclusion) Chapter 6 1 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and Combinations 2 Section 6.1 3

More information

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10?

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10? Chapter 5. Counting 5.1 The Basic of Counting What is counting? (how many ways of doing things) combinations: how many possible ways to choose 4 people from 10? how many license plates that start with

More information

Grade 6 Math Circles March 9, 2011 Combinations

Grade 6 Math Circles March 9, 2011 Combinations 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles March 9, 2011 Combinations Review 1. Evaluate 6! 6 5 3 2 1 = 720 2. Evaluate 5! 7

More information

7.4 Permutations and Combinations

7.4 Permutations and Combinations 7.4 Permutations and Combinations The multiplication principle discussed in the preceding section can be used to develop two additional counting devices that are extremely useful in more complicated counting

More information

PHYSICS 202 EXAM 3 March 31, 2005

PHYSICS 202 EXAM 3 March 31, 2005 PHYSICS 202 EXAM 3 March 31, 2005 NAME: SECTION: 517 518 519 520 Note: 517 Recitation Mon 4:10 518 Recitation Wed 10:20 519 Recitation Wed 8:00 520 Recitation Mon 1:50 There are a total of 11 problems

More information

DISCRETE STRUCTURES COUNTING

DISCRETE STRUCTURES COUNTING DISCRETE STRUCTURES COUNTING LECTURE2 The Pigeonhole Principle The generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least N/k of the

More information

November 6, Chapter 8: Probability: The Mathematics of Chance

November 6, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

More information

Jong C. Park Computer Science Division, KAIST

Jong C. Park Computer Science Division, KAIST Jong C. Park Computer Science Division, KAIST Today s Topics Basic Principles Permutations and Combinations Algorithms for Generating Permutations Generalized Permutations and Combinations Binomial Coefficients

More information

DISCUSSION #8 FRIDAY MAY 25 TH Sophie Engle (Teacher Assistant) ECS20: Discrete Mathematics

DISCUSSION #8 FRIDAY MAY 25 TH Sophie Engle (Teacher Assistant) ECS20: Discrete Mathematics DISCUSSION #8 FRIDAY MAY 25 TH 2007 Sophie Engle (Teacher Assistant) ECS20: Discrete Mathematics 2 Homework 8 Hints and Examples 3 Section 5.4 Binomial Coefficients Binomial Theorem 4 Example: j j n n

More information

Extending the Sierpinski Property to all Cases in the Cups and Stones Counting Problem by Numbering the Stones

Extending the Sierpinski Property to all Cases in the Cups and Stones Counting Problem by Numbering the Stones Journal of Cellular Automata, Vol. 0, pp. 1 29 Reprints available directly from the publisher Photocopying permitted by license only 2014 Old City Publishing, Inc. Published by license under the OCP Science

More information

CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

Counting integral solutions

Counting integral solutions Thought exercise 2.2 20 Counting integral solutions Question: How many non-negative integer solutions are there of x 1 +x 2 +x 3 +x 4 = 10? Thought exercise 2.2 20 Counting integral solutions Question:

More information

November 8, Chapter 8: Probability: The Mathematics of Chance

November 8, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 8, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Crystallographic notation The first symbol

More information

Week 3 Classical Probability, Part I

Week 3 Classical Probability, Part I Week 3 Classical Probability, Part I Week 3 Objectives Proper understanding of common statistical practices such as confidence intervals and hypothesis testing requires some familiarity with probability

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018 Mathematical Foundations of omputer Science Lecture Outline ugust 30, 2018 ounting ounting is a part of combinatorics, an area of mathematics which is concerned with the arrangement of objects of a set

More information

19.2 Permutations and Probability

19.2 Permutations and Probability Name Class Date 19.2 Permutations and Probability Essential Question: When are permutations useful in calculating probability? Resource Locker Explore Finding the Number of Permutations A permutation is

More information

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting Discrete Mathematics: Logic Discrete Mathematics: Lecture 15: Counting counting combinatorics: the study of the number of ways to put things together into various combinations basic counting principles

More information

Mat 344F challenge set #2 Solutions

Mat 344F challenge set #2 Solutions Mat 344F challenge set #2 Solutions. Put two balls into box, one ball into box 2 and three balls into box 3. The remaining 4 balls can now be distributed in any way among the three remaining boxes. This

More information

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES MARK SHATTUCK AND TAMÁS WALDHAUSER Abstract. We give combinatorial proofs for some identities involving binomial sums that have no closed

More information

Combinational Mathematics - I

Combinational Mathematics - I Combinational Mathematics - I Jon T. Butler Naval Postgraduate School, Monterey, CA, USA We are here I live here Meiji University 10:50-12:30 September 28, 2018 J. T. Butler Combinatorial Mathematics I

More information

Unit 5 Radical Functions & Combinatorics

Unit 5 Radical Functions & Combinatorics 1 Graph of y Unit 5 Radical Functions & Combinatorics x: Characteristics: Ex) Use your knowledge of the graph of y x and transformations to sketch the graph of each of the following. a) y x 5 3 b) f (

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set CSE21: Lecture 3 1 Reminder Piazza forum address: http://piazza.com/ucsd/summer2013/cse21/hom e Notes on

More information

CSCI FOUNDATIONS OF COMPUTER SCIENCE

CSCI FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 April 2, 2015 2 Announcements Homework 6 is due next Monday, April 6 at 10am in class. Homework 6 ClarificaMon In Problem 2C, where you need to

More information

chapter 2 COMBINATORICS 2.1 Basic Counting Techniques The Rule of Products GOALS WHAT IS COMBINATORICS?

chapter 2 COMBINATORICS 2.1 Basic Counting Techniques The Rule of Products GOALS WHAT IS COMBINATORICS? chapter 2 COMBINATORICS GOALS Throughout this book we will be counting things. In this chapter we will outline some of the tools that will help us count. Counting occurs not only in highly sophisticated

More information

Welcome! Worksheet Counting Principal, Permutations, Combinations. Updates: U4T is 12/12

Welcome! Worksheet Counting Principal, Permutations, Combinations. Updates: U4T is 12/12 Welcome! U4H1: Worksheet Counting Principal, Permutations, Combinations Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. No new assignment list since this section

More information

Stacking Blocks and Counting Permutations

Stacking Blocks and Counting Permutations Stacking Blocks and Counting Permutations Lara K. Pudwell Valparaiso University Valparaiso, Indiana 46383 Lara.Pudwell@valpo.edu In this paper we will explore two seemingly unrelated counting questions,

More information

Harmonic numbers, Catalan s triangle and mesh patterns

Harmonic numbers, Catalan s triangle and mesh patterns Harmonic numbers, Catalan s triangle and mesh patterns arxiv:1209.6423v1 [math.co] 28 Sep 2012 Sergey Kitaev Department of Computer and Information Sciences University of Strathclyde Glasgow G1 1XH, United

More information

How can I count arrangements?

How can I count arrangements? 10.3.2 How can I count arrangements? Permutations There are many kinds of counting problems. In this lesson you will learn to recognize problems that involve arrangements. In some cases outcomes will be

More information

DIVERSE PROBLEMS CONCERNING THE GAME OF TREIZE

DIVERSE PROBLEMS CONCERNING THE GAME OF TREIZE DIVERSE PROBLEMS CONCERNING THE GAME OF TREIZE PIERRE RENARD DE MONTMORT EXTRACTED FROM THE ESSAY D ANALYSE SUR LES JEUX DE HAZARD 2ND EDITION OF 73, PP. 30 43 EXPLICATION OF THE GAME. 98. The players

More information

With Question/Answer Animations. Chapter 6

With Question/Answer Animations. Chapter 6 With Question/Answer Animations Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and

More information

CSE 312: Foundations of Computing II Quiz Section #1: Counting (solutions)

CSE 312: Foundations of Computing II Quiz Section #1: Counting (solutions) CSE 31: Foundations of Computing II Quiz Section #1: Counting (solutions Review: Main Theorems and Concepts 1. Product Rule: Suppose there are m 1 possible outcomes for event A 1, then m possible outcomes

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 1 Probability Properties of probability Counting techniques 1 Chapter 1 Probability Probability Theorem P(φ)

More information

Enumeration of Two Particular Sets of Minimal Permutations

Enumeration of Two Particular Sets of Minimal Permutations 3 47 6 3 Journal of Integer Sequences, Vol. 8 (05), Article 5.0. Enumeration of Two Particular Sets of Minimal Permutations Stefano Bilotta, Elisabetta Grazzini, and Elisa Pergola Dipartimento di Matematica

More information

Introductory Probability

Introductory Probability Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

More information

Principle of Inclusion-Exclusion Notes

Principle of Inclusion-Exclusion Notes Principle of Inclusion-Exclusion Notes The Principle of Inclusion-Exclusion (often abbreviated PIE is the following general formula used for finding the cardinality of a union of finite sets. Theorem 0.1.

More information

Math 3338: Probability (Fall 2006)

Math 3338: Probability (Fall 2006) Math 3338: Probability (Fall 2006) Jiwen He Section Number: 10853 http://math.uh.edu/ jiwenhe/math3338fall06.html Probability p.1/7 2.3 Counting Techniques (III) - Partitions Probability p.2/7 Partitioned

More information

Combinational Mathematics Part 1

Combinational Mathematics Part 1 j1 Combinational Mathematics Part 1 Jon T. Butler Naval Postgraduate School, Monterey, CA, USA Meiji Univ. 10:30-12:00 October 9, 2015 J. T. Butler Combinatorial Mathematics Part 1 1 Monterey Coast Pacific

More information

Introducing: second-order permutation and corresponding second-order permutation factorial

Introducing: second-order permutation and corresponding second-order permutation factorial Introducing: second-order permutation and corresponding second-order permutation factorial Bassey Godwin Bassey JANUARY 2019 1 Abstract In this study we answer questions that have to do with finding out

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Lecture Notes Counting 101 Note to improve the readability of these lecture notes, we will assume that multiplication takes precedence over division, i.e. A / B*C

More information

Counting Things. Tom Davis March 17, 2006

Counting Things. Tom Davis   March 17, 2006 Counting Things Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 17, 2006 Abstract We present here various strategies for counting things. Usually, the things are patterns, or

More information

LAMC Junior Circle February 3, Oleg Gleizer. Warm-up

LAMC Junior Circle February 3, Oleg Gleizer. Warm-up LAMC Junior Circle February 3, 2013 Oleg Gleizer oleg1140@gmail.com Warm-up Problem 1 Compute the following. 2 3 ( 4) + 6 2 Problem 2 Can the value of a fraction increase, if we add one to the numerator

More information

MATH 351 Fall 2009 Homework 1 Due: Wednesday, September 30

MATH 351 Fall 2009 Homework 1 Due: Wednesday, September 30 MATH 51 Fall 2009 Homework 1 Due: Wednesday, September 0 Problem 1. How many different letter arrangements can be made from the letters BOOKKEEPER. This is analogous to one of the problems presented in

More information