# Making Predictions with Theoretical Probability. ESSENTIAL QUESTION How do you make predictions using theoretical probability?

Size: px
Start display at page:

Download "Making Predictions with Theoretical Probability. ESSENTIAL QUESTION How do you make predictions using theoretical probability?"

Transcription

1 L E S S O N 13.3 Making Predictions with Theoretical Probability 7.SP.3.6 predict the approximate relative frequency given the probability. Also 7.SP.3.7a ESSENTIAL QUESTION How do you make predictions using theoretical probability? Using Theoretical Probability to Make a Quantitative Prediction You can make quantitative predictions based on theoretical probability just as you did with experimental probability earlier. EXAMPLE 1 You roll a standard number cube 150 times. Predict how many times you will roll a 3 or a 4. 7.SP.3.6 My Notes The probability of rolling a 3 or a 4 is Method 1: Set up a proportion. Write a proportion. 1 out of 3 is how many out of 150? Method 2: Set up an equation and solve. p(rolling a 3 or 4) Number of events = Prediction Since 3 times 50 is 150, multiply 1 times 50 to find the value of x Multiply the probability by the total number of rolls. Solve for x. You can expect to roll a 3 or a 4 about 50 times out of 150. Lesson

2 Celia volunteers at her local animal shelter. She has an equally likely chance to be assigned to the dog, cat, bird, or reptile section. If she volunteers 24 times, about how many times should she expect to be assigned to the dog section? Set up a proportion. The probability of being assigned to the dog section is Write a proportion. 1 out of 4 is how many out of 24? Since 4 times 6 is 24, multiply 1 times 6 to find the value of x. Celia can expect to be assigned to the dog section about 6 times out of 24. YOUR TURN 1. Predict how many times you will roll a number less than 5 if you roll a standard number cube 250 times. 2. You flip a fair coin 18 times. About how many times would you expect heads to appear? Using Theoretical Probability to Make a Qualitative Prediction Earlier, you learned how to make predictions using experimental probability. You can use theoretical probabilities in the same way to help you predict or compare how likely events are. Image Credits: zothen/ istockphoto.com 412 Unit 6

3 EXAMPLE 2 7.SP.3.6, 7.SP.3.7a Herschel pulls a sock out of his drawer without looking and puts it on. The sock is black. There are 7 black socks, 8 white socks, and 5 striped socks left in the drawer. He pulls out a second sock without looking. Is it likely that he will be wearing matching socks to school? Find the theoretical probability that Herschel picks a matching sock and the probability that he picks one that does not match. P(not matching) = 1 P(matching) The probability that Herschel picks a matching sock is about half the probability that he picks one that does not match. It is likely that he will not be wearing matching socks to school. All 2,000 customers at a gym are randomly assigned a 3-digit security code that they use to access their online accounts. The codes are made up of the digits 0 through 4, and the digits can be repeated. Is it likely that fewer than 10 of the customers are issued the code 103? Set up a proportion. The probability of the code 103 is Write a proportion. 1 out of 125 is how many out of 2,000? Since 125 times 16 is 2,000, multiply 1 times 16 to find the value of x. There are 5 possible first numbers, 5 possible second numbers, and 5 possible third numbers. So, the probability of any one code is It is not likely that fewer than 10 of the customers get the same code. It is more likely that 16 members get the code 103. YOUR TURN 3. A bag of marbles contains 8 red marbles, 4 blue marbles, and 5 white marbles. Tom picks a marble at random. Is it more likely that he picks a red marble or a marble of another color? 4. At a fundraiser, a school group charges \$6 for tickets for a grab bag. You choose one bill at random from a bag that contains 40 \$1 bills, 20 \$5 bills, 5 \$10 bills, 5 \$20 bills, and 1 \$100 bill. Is it likely that you will win enough to pay for your ticket? Justify your answer. Lesson

4 Guided Practice 1. Bob works at a construction company. He has an equally likely chance to be assigned to work different crews every day. He can be assigned to work on crews building apartments, condominiums, or houses. If he works 18 days a month, about how many times should he expect to be assigned to the house crew? (Example 1) STEP 1 Find the probabilities of being assigned to each crew. The probability of being assigned to the house crew is STEP 2 Set up and solve a proportion. Bob can expect to be assigned to the house crew about times out of During a raffle drawing, half of the ticket holders will receive a prize. The winners are equally likely to win one of three prizes: a book, a gift certificate to a restaurant, or a movie ticket. If there are 300 ticket holders, predict the number of people who will win a movie ticket. (Example 1) 3. In Mr. Jawarani s first period math class, there are 9 students with hazel eyes, 10 students with brown eyes, 7 students with blue eyes, and 2 students with green eyes. Mr. Jawarani picks a student at random. Which color eyes is the student most likely to have? Explain. (Example 2) ESSENTIAL QUESTION CHECK-IN 4. How do you make predictions using theoretical probability? 414 Unit 6

5 13.3 Independent Practice 7.SP.3.6, 7.SP.3.7a 5. A bag contains 6 red marbles, 2 white marbles, and 1 gray marble. You randomly pick out a marble, record its color, and put it back in the bag. You repeat this process 45 times. How many white or gray marbles do you expect to get? 6. Using the blank circle below, draw a spinner with 8 equal sections and 3 colors red, green, and yellow. The spinner should be such that you are equally likely to land on green or yellow, but more likely to land on red than either on green or yellow. 9. Suppose a solitaire player has played 1,000 games. Predict how many times the player turned over a red card as the first card. 10. John and O Neal are playing a board game in which they roll two number cubes. John needs to get a sum of 8 on the number cubes to win. O Neal needs a sum of 11. If they take turns rolling the number cube, who is more likely to win? Explain. Use the following for Exercises 7 9. In a standard 52-card deck, half of the cards are red and half are black. The 52 cards are divided evenly into 4 suits: spades, hearts, diamonds, and clubs. Each suit has three face cards (jack, queen, king), and an ace. Each suit also has 9 cards numbered from 2 to Dawn draws 1 card, replaces it, and draws another card. Is it more likely that she draws 2 red cards or 2 face cards? 11. Every day, Navya s teacher randomly picks a number from 1 to 20 to be the number of the day. The number of the day can be repeated. There are 180 days in the school year. Predict how many days the number of the day will be greater than Eben rolls two standard number cubes 36 times. Predict how many times he will roll a sum of Communicate Mathematical Ideas Can you always show that a prediction based on theoretical probability is true by performing the event often enough? If so, explain why. If not, describe a situation that justifies your response. 8. Luis draws 1 card from a deck, 39 times. Predict how many times he draws an ace. Lesson

### Making Predictions with Theoretical Probability

? LESSON 6.3 Making Predictions with Theoretical Probability ESSENTIAL QUESTION Proportionality 7.6.H Solve problems using qualitative and quantitative predictions and comparisons from simple experiments.

### Theoretical Probability and Simulations

Theoretical Probability and Simulations? MODULE 13 LESSON 13.1 Theoretical Probability of Simple Events ESSENTIAL QUESTION How can you use theoretical probability to solve real-world problems? LESSON 13.2

### Theoretical Probability and Simulations

? Theoretical Probability and Simulations ESSENTIAL QUESTION How can you use theoretical probability to solve real-world problems? MODULE 13 LESSON 13.1 Theoretical Probability of Simple Events 7.SP.7,

### Theoretical Probability and Simulations

Theoretical Probability and Simulations? MODULE 13 LESSON 13.1 Theoretical Probability of Simple Events ESSENTIAL QUESTION 7.SP.6, 7.SP.7, 7.SP.7a How can you use theoretical probability to solve real-world

### 1. Theoretical probability is what should happen (based on math), while probability is what actually happens.

Name: Date: / / QUIZ DAY! Fill-in-the-Blanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental

### COMPOUND EVENTS. Judo Math Inc.

COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)

### MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

### Foundations to Algebra In Class: Investigating Probability

Foundations to Algebra In Class: Investigating Probability Name Date How can I use probability to make predictions? Have you ever tried to predict which football team will win a big game? If so, you probably

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### Probability of Independent Events. If A and B are independent events, then the probability that both A and B occur is: P(A and B) 5 P(A) p P(B)

10.5 a.1, a.5 TEKS Find Probabilities of Independent and Dependent Events Before You found probabilities of compound events. Now You will examine independent and dependent events. Why? So you can formulate

### NAME DATE PERIOD. Study Guide and Intervention

9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.

### Unit 7 Central Tendency and Probability

Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at

### Activity 1: Play comparison games involving fractions, decimals and/or integers.

Students will be able to: Lesson Fractions, Decimals, Percents and Integers. Play comparison games involving fractions, decimals and/or integers,. Complete percent increase and decrease problems, and.

### Lesson Lesson 3.7 ~ Theoretical Probability

Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left

### Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

### Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

### Probability of Independent and Dependent Events

706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

### number of favorable outcomes 2 1 number of favorable outcomes 10 5 = 12

Probability (Day 1) Green Problems Suppose you select a letter at random from the words MIDDLE SCHOOL. Find P(L) and P(not L). First determine the number of possible outcomes. There are 1 letters in the

### This Probability Packet Belongs to:

This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### Fair Game Review. Chapter 9. Simplify the fraction

Name Date Chapter 9 Simplify the fraction. 1. 10 12 Fair Game Review 2. 36 72 3. 14 28 4. 18 26 5. 32 48 6. 65 91 7. There are 90 students involved in the mentoring program. Of these students, 60 are girls.

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### 1. Decide whether the possible resulting events are equally likely. Explain. Possible resulting events

Applications. Decide whether the possible resulting events are equally likely. Explain. Action Possible resulting events a. You roll a number You roll an even number, or you roll an cube. odd number. b.

### 2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2

Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate

### Grade 8 Math Assignment: Probability

Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors - The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper

### Unit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements

Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability

### Lesson 15.5: Independent and Dependent Events

Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability

### Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

### Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

### Use this information to answer the following questions.

1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

### Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

### 13-6 Probabilities of Mutually Exclusive Events

Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome

### Review. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers

FOUNDATIONS Outline Sec. 3-1 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into

### Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.

Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation

### Name Class Date. Introducing Probability Distributions

Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

### Grade 7/8 Math Circles February 25/26, Probability

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely

### Name: Class: Date: ID: A

Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,

### PRE TEST. Math in a Cultural Context*

P grade PRE TEST Salmon Fishing: Investigations into A 6P th module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: Grade: Teacher: School: Location of School: Date: *This

### Lesson 16.1 Assignment

Lesson 16.1 Assignment Name Date Rolling, Rolling, Rolling... Defining and Representing Probability 1. Rasheed is getting dressed in the dark. He reaches into his sock drawer to get a pair of socks. He

### Section 7.3 and 7.4 Probability of Independent Events

Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and

### Chapter 10 Practice Test Probability

Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its

### Practice Ace Problems

Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according

### Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 1-3 Lesson 2: Choosing Marbles

### When a number cube is rolled once, the possible numbers that could show face up are

C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that

### Name Date Class. 2. dime. 3. nickel. 6. randomly drawing 1 of the 4 S s from a bag of 100 Scrabble tiles

Name Date Class Practice A Tina has 3 quarters, 1 dime, and 6 nickels in her pocket. Find the probability of randomly drawing each of the following coins. Write your answer as a fraction, as a decimal,

### Data Collection Sheet

Data Collection Sheet Name: Date: 1 Step Race Car Game Play 5 games where player 1 moves on roles of 1, 2, and 3 and player 2 moves on roles of 4, 5, # of times Player1 wins: 3. What is the theoretical

### Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.

Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include

### Conditional Probability Worksheet

Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### Conditional Probability Worksheet

Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### Lesson 3: Chance Experiments with Equally Likely Outcomes

Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records

### Name: Date: Interim 1-3 ACT Aspire, Pro-Core, and AIR Practice Site Statistics and Probability Int Math 2

1. Standard: S.ID.C.7: The graph below models a constant decrease in annual licorice sales for Licorice Company, Inc., from 1998 through 2000. The points have been connected to illustrate the trend. Which

### What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?

Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and

### Math 7 Notes - Unit 7B (Chapter 11) Probability

Math 7 Notes - Unit 7B (Chapter 11) Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare

### Date. Probability. Chapter

Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

### Objectives. Determine whether events are independent or dependent. Find the probability of independent and dependent events.

Objectives Determine whether events are independent or dependent. Find the probability of independent and dependent events. independent events dependent events conditional probability Vocabulary Events

### 10.1 Applying the Counting Principle and Permutations (helps you count up the number of possibilities!)

10.1 Applying the Counting Principle and Permutations (helps you count up the number of possibilities!) Example 1: Pizza You are buying a pizza. You have a choice of 3 crusts, 4 cheeses, 5 meat toppings,

### (a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?

Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent

### Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

### Simulations. 1 The Concept

Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that can be

### Lesson 1: Chance Experiments

Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that

### MATH-8 SOL8.12 Probability CW Exam not valid for Paper Pencil Test Sessions

MTH- SOL. Probability W Exam not valid for Paper Pencil Test Sessions [Exam I:NFP0 box contains five cards lettered,,,,. If one card is selected at random from the box and NOT replaced, what is the probability

### 19.3 Combinations and Probability

Name Class Date 19.3 Combinations and Probability Essential Question: What is the difference between a permutaion and a combination? Explore Finding the Number of Combinations A combination is a selection

### Name Date. Sample Spaces and Probability For use with Exploration 12.1

. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of

### Name: Unit 7 Study Guide 1. Use the spinner to name the color that fits each of the following statements.

1. Use the spinner to name the color that fits each of the following statements. green blue white white blue a. The spinner will land on this color about as often as it lands on white. b. The chance of

### Use a tree diagram to find the number of possible outcomes. 2. How many outcomes are there altogether? 2.

Use a tree diagram to find the number of possible outcomes. 1. A pouch contains a blue chip and a red chip. A second pouch contains two blue chips and a red chip. A chip is picked from each pouch. The

### PRE TEST KEY. Math in a Cultural Context*

PRE TEST KEY Salmon Fishing: Investigations into A 6 th grade module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: PRE TEST KEY Grade: Teacher: School: Location of School:

### ABE/ASE Standards Mathematics

[Lesson Title] TEACHER NAME PROGRAM NAME Program Information Playing the Odds [Unit Title] Data Analysis and Probability NRS EFL(s) 3 4 TIME FRAME 240 minutes (double lesson) ABE/ASE Standards Mathematics

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Essential Question How can you list the possible outcomes in the sample space of an experiment?

. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment

### 2 Event is equally likely to occur or not occur. When all outcomes are equally likely, the theoretical probability that an event A will occur is:

10.3 TEKS a.1, a.4 Define and Use Probability Before You determined the number of ways an event could occur. Now You will find the likelihood that an event will occur. Why? So you can find real-life geometric

### 4.3 Rules of Probability

4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

### Classical vs. Empirical Probability Activity

Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing

### Independent and Mutually Exclusive Events

Independent and Mutually Exclusive Events By: OpenStaxCollege Independent and mutually exclusive do not mean the same thing. Independent Events Two events are independent if the following are true: P(A

### Such a description is the basis for a probability model. Here is the basic vocabulary we use.

5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

### CCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES:

CCM6+7+ Unit 11 ~ Page 1 CCM6+7+ UNIT 11 PROBABILITY Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: Unit 11 Vocabulary List 2 Simple Event Probability 3-7 Expected Outcomes Making Predictions 8-9 Theoretical

### WSMA Compound Probability Lesson 10. The combined likelihood of multiple events is called compound probability.

WSMA Compound Probability Lesson 0 Sometimes you need to know the probability of an event which is really the combination of various actions. It may be several dice rolls, or several cards selected from

### * How many total outcomes are there if you are rolling two dice? (this is assuming that the dice are different, i.e. 1, 6 isn t the same as a 6, 1)

Compound probability and predictions Objective: Student will learn counting techniques * Go over HW -Review counting tree -All possible outcomes is called a sample space Go through Problem on P. 12, #2

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### CONDITIONAL PROBABILITY (PRACTICE PACKET)

CONDITIONL PROILITY (PRCTICE PCKET) NME: PER; DTE: _ Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these pairs of events are dependent? You

### Grade 6 Math Circles Fall Oct 14/15 Probability

1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

### Part 1: I can express probability as a fraction, decimal, and percent

Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

### Finite Mathematics MAT 141: Chapter 8 Notes

Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication

### out one marble and then a second marble without replacing the first. What is the probability that both marbles will be white?

Example: Leah places four white marbles and two black marbles in a bag She plans to draw out one marble and then a second marble without replacing the first What is the probability that both marbles will

### On a loose leaf sheet of paper answer the following questions about the random samples.

7.SP.5 Probability Bell Ringers On a loose leaf sheet of paper answer the following questions about the random samples. 1. Veterinary doctors marked 30 deer and released them. Later on, they counted 150

### Basic Concepts of Probability and Counting Section 3.1

Basic Concepts of Probability and Counting Section 3.1 Summer 2013 - Math 1040 June 17 (1040) M 1040-3.1 June 17 1 / 12 Roadmap Basic Concepts of Probability and Counting Pages 128-137 Counting events,

### SAMPLE EVALUATION ONLY

Topic 10 Probability 10.1 Overview Why learn this? Probability allows us to describe how likely an event is to happen. To understand the chances of an event happening it is important to understand the

### Probability Essential Math 12 Mr. Morin

Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected

### Lesson 17.1 Assignment

Lesson 17.1 Assignment Name Date Is It Better to Guess? Using Models for Probability Charlie got a new board game. 1. The game came with the spinner shown. 6 7 9 2 3 4 a. List the sample space for using

### ATHS FC Math Department Al Ain Remedial worksheet. Lesson 10.4 (Ellipses)

ATHS FC Math Department Al Ain Remedial worksheet Section Name ID Date Lesson Marks Lesson 10.4 (Ellipses) 10.4, 10.5, 0.4, 0.5 and 0.6 Intervention Plan Page 1 of 19 Gr 12 core c 2 = a 2 b 2 Question

### 6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?

Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different

### UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet

Name Period Date UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet 20.1 Solving Proportions 1 Add, subtract, multiply, and divide rational numbers. Use rates and proportions to solve problems.