# On a loose leaf sheet of paper answer the following questions about the random samples.

Size: px
Start display at page:

Transcription

1 7.SP.5 Probability Bell Ringers On a loose leaf sheet of paper answer the following questions about the random samples. 1. Veterinary doctors marked 30 deer and released them. Later on, they counted 150 deer, 12 of which had marks. To the nearest whole number, what is the best estimate for the deer population? 2. Gregory collected two random samples of 100 Woman regarding woman s color bag preference for his new bag business. Make an inference from the data. 3. Herald is keeping track of eagles. To do so, he put tags on 25 eagles and released them. Later, he catches 120 eagles; 16 eagles were tagged. Find the best estimate for the Eagle population? 4. Joanna uses a random sample of 50 students in her grade and asks them about their favorite type of movies. She writes the data in the table shown. If there are a total of 500 students in her grade, what are two inferences you can make about the population?

2 Bell ringer review 1. Veterinary doctors marked 30 deer and released them. Later on, they counted 150 deer, 12 of which had marks. To the nearest whole number, what is the best estimate for the deer population? 12 = X 12x = x = x = 375 deer

3 Bell Ringer Review 2. Gregory collected two random samples of 100 Woman regarding woman s color bag preference for his new bag business. Make an inference from the data. The black bag is the most popular bag. The black bag is twice as popular as the blue and red bag. The blue and red bags are approximately half as popular as the black bag. The black bag is about half of the total votes.

4 Bell Ringer Review 3. Herald is keeping track of eagles. To do so, he put tags on 25 eagles and released them. Later, he catches 120 eagles; 16 eagles were tagged. Find the best estimate for the Eagle population? 16 = X 16x = x = x = eagles

5 Bell ringer Review 4. Joanna uses a random sample of 50 students in her grade and asks them about their favorite type of movies. She writes the data in the table shown. If there are a total of 500 students in her grade, what are two inferences you can make about the population? Favorite type of movie Action 10 Drama 26 Comedy 6 Fantasy 8 Number of Students The majority of the students prefer dramas. About ½ of the students prefer dramas About 4 times as many people prefer dramas than fantasys

6 7.SP.5 Probability Created By Melissa Forsyth

7 What is probability? What if I told you that we were going to play a game. I will choose three students and the first student I pick will pick their color first, and the second student can pick next, and the third student will the remaining color. The players will use the following spinner to play. Each person takes a turn spinning the spinner and recording what color the spinner stops on. The winner is the person whose color is the first to happen 10 times. Who is most likely to win the game? Green Why? It has the biggest piece.

8 What if we changed the spinner? Who is most likely to win each game? Why? Red and Green are equally likely because there is the same amount for each. Green is more likely because there is a bigger amount for green than red. red is more likely because there is a bigger amount for red than green.

9 What is probability? Probability is a measure of how likely it is that an event will happen. A probability is indicated by a number between 0 and 1. Some events are certain to happen, while others are impossible. In most cases, the probability of an event happening is somewhere between certain and impossible.

10 Description Some events are impossible. These events have a probability of 0. Some events are certain. These events have a probability of 1. Some events are classified as equally likely to happen or to not happen. These events have a probability of 1 2. Some events are more likely to happen than not to happen. These events have a probability that is greater than 0.5. These events could be described as likely to occur. Some events are less likely to happen than not to happen. These events have a probability that is less than 0.5. These events could be described as unlikely to occur. Example You have a bag with two green cubes, and you select one at random. Selecting a blue cube is an impossible event. You have a bag with two green cubes, and you select one at random. Selecting a green cube is a certain event. You have a bag with one blue cube and one red cube, and you randomly pick one. Selecting a blue cube is equally likely to happen or not to happen. If you have a bag that contains eight blue cubes and two red cubes, and you select one at random, it is likely that you will get a blue cube. If you have a bag that contains eight blue cubes and two red cubes, and you select one at random, it is unlikely that you will get a red cube.

11 Where does it fall on the scale? Decide where each event would be located on the scale above. Place the letter for each event on the appropriate place on the probability scale. Event: A. You will see a live dinosaur on the way home from school today. 0 B. A solid rock dropped in the water will sink. 1 C. A round disk with one side red and the other side yellow will land yellow side up when flipped..5 D. A spinner with four equal parts numbered 1 4 will land on the 4 on the next spin..25 E. Your full name will be drawn when a full name is selected randomly from a bag containing the full names of all of the students in your class. F. A red cube will be drawn when a cube is selected from a bag that has five blue cubes and five red cubes..5 G. Tomorrow the temperature outside will be 250 degrees. 0 Smaller than.25 but larger than 0

12 Design In your group In your group come up with a scenario that will 1. Have a probability 1 2. Have a probability 0 3. Have a probability.5

13 Decide the scale A shape will be randomly drawn from the box shown below. Decide where each event would be located on the probability scale. Then, place the letter for each event on the appropriate place on the probability scale. Event: A. A circle is drawn. 0, not likely B. A square is drawn. likely C. A star is drawn. Not likely D. A shape that is not a square is drawn. likely

14 What is approximate probability Approximate probability is the likely hood that an event will occur given a random sample of probabilities. We make an educated guess about what will happen given the outcomes of the data provide.

15 Approximate Probability A student brought a very large jar of animal crackers to share with students in class. Rather than count and sort all the different types of crackers, the student randomly chose 20 crackers and found the following counts for the different types of animal crackers. Estimate the probability of selecting a zebra. 3 out of 20 chance Or 3 20 x 100 = 15% chance This is approximate probability because we did not sort all of the animal shapes to calculate the actual probability.

16 Approximate Probability Each of the 20 students in Mr. Anderson's class flipped a coin ten times and recorded how many times it came out heads. How many heads do you think you will see out of ten tosses? Would it surprise you to see 4 heads out of ten tosses? Explain why or why not. Total number of flips : 10 x 20 = 200 Total number of heads: out of 200 flips are heads x 100 = 53.5% chance of getting a head So it would not surprise me to get 4 heads out of 10 tosses because 4 of 10 is 40% and we have a 53.5% chance to get a heads according to this data.

17 Exit Ticket Decide the scale for each of the following events. a. A vowel will be picked when a letter is randomly selected from the word lieu. b. A vowel will be picked when a letter is randomly selected from the word math. c. A blue cube will be drawn from a bag containing only five blue and five black cubes. d. A red cube will be drawn from a bag of 100 red cubes. e. A red cube will be drawn from a bag of 10 red and 90 blue cubes.

### Lesson 1: Chance Experiments

Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability

### When a number cube is rolled once, the possible numbers that could show face up are

C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that

### Lesson 15.5: Independent and Dependent Events

Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the

### ACTIVITY: Conducting Experiments

0. Outcomes and Events the number of possible results? In an experiment, how can you determine An experiment is an investigation or a procedure that has varying results. Flipping a coin, rolling a number

### Use this information to answer the following questions.

1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following

### Math 7 Notes - Unit 7B (Chapter 11) Probability

Math 7 Notes - Unit 7B (Chapter 11) Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare

### Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

### What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?

Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and

### Part 1: I can express probability as a fraction, decimal, and percent

Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

### Practice Probability TEKS 7.13.A

Determine whether each event is impossible, unlikely, as likely as not, likely, or certain.. rolling an even number on a number cube labeled through 6 2. picking a card with a vowel on it from a box of

### Probability and the Monty Hall Problem Rong Huang January 10, 2016

Probability and the Monty Hall Problem Rong Huang January 10, 2016 Warm-up: There is a sequence of number: 1, 2, 4, 8, 16, 32, 64, How does this sequence work? How do you get the next number from the previous

### ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS

Math 7 Probability Test Review Name: Date Hour Directions: Read each question carefully. Answer each question completely. ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS! Show all your work for full credit!

### Lesson 3: Chance Experiments with Equally Likely Outcomes

Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records

### 2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2

Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the

### Lesson 17.1 Assignment

Lesson 17.1 Assignment Name Date Is It Better to Guess? Using Models for Probability Charlie got a new board game. 1. The game came with the spinner shown. 6 7 9 2 3 4 a. List the sample space for using

### FAVORITE MEALS NUMBER OF PEOPLE Hamburger and French fries 17 Spaghetti 8 Chili 12 Vegetarian delight 3

Probability 1. Destiny surveyed customers in a restaurant to find out their favorite meal. The results of the survey are shown in the table. One person in the restaurant will be picked at random. Based

### Making Predictions with Theoretical Probability. ESSENTIAL QUESTION How do you make predictions using theoretical probability?

L E S S O N 13.3 Making Predictions with Theoretical Probability 7.SP.3.6 predict the approximate relative frequency given the probability. Also 7.SP.3.7a ESSENTIAL QUESTION How do you make predictions

### 1. Theoretical probability is what should happen (based on math), while probability is what actually happens.

Name: Date: / / QUIZ DAY! Fill-in-the-Blanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental

### Section Theoretical and Experimental Probability...Wks 3

Name: Class: Date: Section 6.8......Theoretical and Experimental Probability...Wks 3. Eight balls numbered from to 8 are placed in a basket. One ball is selected at random. Find the probability that it

### Lesson Lesson 3.7 ~ Theoretical Probability

Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left

### This Probability Packet Belongs to:

This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into

### Probability of Independent and Dependent Events

706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

### FSA 7 th Grade Math. MAFS.7.SP.1.1 & MAFS.7.SP.1.2 Level 2. MAFS.7.SP.1.1 & MAFS.7.SP.1.2 Level 2. MAFS.7.SP.1.1 & MAFS.7.SP.1.

FSA 7 th Grade Math Statistics and Probability Two students are taking surveys to find out if people will vote to fund the building of a new city park on election day. Levonia asks 20 parents of her friends.

### PRE TEST. Math in a Cultural Context*

P grade PRE TEST Salmon Fishing: Investigations into A 6P th module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: Grade: Teacher: School: Location of School: Date: *This

### Name Date Class. 2. dime. 3. nickel. 6. randomly drawing 1 of the 4 S s from a bag of 100 Scrabble tiles

Name Date Class Practice A Tina has 3 quarters, 1 dime, and 6 nickels in her pocket. Find the probability of randomly drawing each of the following coins. Write your answer as a fraction, as a decimal,

### Making Predictions with Theoretical Probability

? LESSON 6.3 Making Predictions with Theoretical Probability ESSENTIAL QUESTION Proportionality 7.6.H Solve problems using qualitative and quantitative predictions and comparisons from simple experiments.

Probability Paradoxes Washington University Math Circle February 20, 2011 1 Introduction We re all familiar with the idea of probability, even if we haven t studied it. That is what makes probability so

### Math 7 /Unit 5 Practice Test: Probability

Math 7 /Unit 5 Practice Test: Probability Name Date 1. Define probability. 2. Define experimental probability.. Define sample space for an experiment 4. What makes experimental probability different from

### These Are a Few of My Favorite Things

Lesson.1 Assignment Name Date These Are a Few of My Favorite Things Modeling Probability 1. A board game includes the spinner shown in the figure that players must use to advance a game piece around the

### If a fair coin is tossed 10 times, what will we see? 24.61% 20.51% 20.51% 11.72% 11.72% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098%

Coin tosses If a fair coin is tossed 10 times, what will we see? 30% 25% 24.61% 20% 15% 10% Probability 20.51% 20.51% 11.72% 11.72% 5% 4.39% 4.39% 0.98% 0.98% 0.098% 0.098% 0 1 2 3 4 5 6 7 8 9 10 Number

### Probability 1. Name: Total Marks: 1. An unbiased spinner is shown below.

Probability 1 A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR and Pearson-Edexcel. Name: Total Marks: 1. An unbiased spinner is shown below. (a) Write a number to make each sentence

### SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability

SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability Name Period Write all probabilities as fractions in reduced form! Use the given information to complete problems 1-3. Five students have the

### PRE TEST KEY. Math in a Cultural Context*

PRE TEST KEY Salmon Fishing: Investigations into A 6 th grade module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: PRE TEST KEY Grade: Teacher: School: Location of School:

### Name: Class: Date: ID: A

Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,

### Chapter 10 Practice Test Probability

Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its

### MATH-8 SOL8.12 Probability CW Exam not valid for Paper Pencil Test Sessions

MTH- SOL. Probability W Exam not valid for Paper Pencil Test Sessions [Exam I:NFP0 box contains five cards lettered,,,,. If one card is selected at random from the box and NOT replaced, what is the probability

### Probability. facts mental math. problem solving. Power Up F

LESSON 7 Probability Power Up facts mental math Power Up F a. Estimation: The width of the paperback book is inches. Round this measurement to the nearest inch. in. b. Geometry: An octagon has how many

### Practice Ace Problems

Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according

### MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

### 4. Raquel has \$2. Does Raquel have enough to buy 3 folders for \$0.69 each?

Chapter 11 eview Name: 1. Draw a picture of each turn. Draw a curved arrow to show the direction of the turn. The vertex of the angle and one side have already been drawn for you. a. 3 4 turn clockwise

### There is no class tomorrow! Have a good weekend! Scores will be posted in Compass early Friday morning J

STATISTICS 100 EXAM 3 Fall 2016 PRINT NAME (Last name) (First name) *NETID CIRCLE SECTION: L1 12:30pm L2 3:30pm Online MWF 12pm Write answers in appropriate blanks. When no blanks are provided CIRCLE your

### Chapter 13 Test Review

1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### MEP Practice Book SA5

5 Probability 5.1 Probabilities MEP Practice Book SA5 1. Describe the probability of the following events happening, using the terms Certain Very likely Possible Very unlikely Impossible (d) (e) (f) (g)

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### Chance and Probability

G Student Book Name Series G Contents Topic Chance and probability (pp. ) probability scale using samples to predict probability tree diagrams chance experiments using tables location, location apply lucky

### Math 1 Unit 4 Mid-Unit Review Chances of Winning

Math 1 Unit 4 Mid-Unit Review Chances of Winning Name My child studied for the Unit 4 Mid-Unit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition

Name lass/grade ate enchmark: M.7.P.7. enchmark: M.7.P.7. William tossed a coin four times while waiting for his bus at the bus stop. The first time it landed on heads. The second time it landed on tails.

### Essential Question How can you list the possible outcomes in the sample space of an experiment?

. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment

### Compound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.

Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event

### Lesson 11.3 Independent Events

Lesson 11.3 Independent Events Draw a tree diagram to represent each situation. 1. Popping a balloon randomly from a centerpiece consisting of 1 black balloon and 1 white balloon, followed by tossing a

### Probability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible

Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen

### Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.

Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include

### Name Date Trial 1: Capture distances with only decimeter markings. Name Trial 1 Trial 2 Trial 3 Average

Decimal Drop Name Date Trial 1: Capture distances with only decimeter markings. Name Trial 1 Trial 2 Trial 3 Average Trial 2: Capture distances with centimeter markings Name Trial 1 Trial 2 Trial 3 Average

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### 9. If 35% of all people have blue eyes, what is the probability that out of 4 randomly selected people, only 1 person has blue eyes?

G/SP focus Name 1. Tonya wants to have a raised flower bed in her backyard. She measures the area of the flower bed to be 10 square feet. The actual measurement of the flower bed is 10.6 square feet. Approximately

### Key Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events

15-4 Compound Probability TEKS FOCUS TEKS (1)(E) Apply independence in contextual problems. TEKS (1)(B) Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy,

### Chance and Probability

F Student Book Name Series F Contents Topic Chance and probability (pp. 0) ordering events relating fractions to likelihood chance experiments fair or unfair the mathletics cup create greedy pig solve

### Data Analysis & Probability Counting Techniques & Probability (Notes)

Data Analysis & Probability Counting Techniques & Probability (Notes) Name I can Date Essential Question(s): Key Concepts Notes Fundamental Counting Principle Factorial Permutations Combinations What is

### Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers

Basic Probability Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show

### A C E. Answers Investigation 3. Applications. 12, or or 1 4 c. Choose Spinner B, because the probability for hot dogs on Spinner A is

Answers Investigation Applications. a. Answers will vary, but should be about for red, for blue, and for yellow. b. Possible answer: I divided the large red section in half, and then I could see that the

### Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

### pre-hs Probability Based on the table, which bill has an experimental probability of next? A) \$10 B) \$15 C) \$1 D) \$20

1. Peter picks one bill at a time from a bag and replaces it. He repeats this process 100 times and records the results in the table. Based on the table, which bill has an experimental probability of next?

### green, green, green, green, green The favorable outcomes of the event are blue and red.

5 Chapter Review Review Key Vocabulary experiment, p. 6 outcomes, p. 6 event, p. 6 favorable outcomes, p. 6 probability, p. 60 relative frequency, p. 6 Review Examples and Exercises experimental probability,

### The Plumb Stones Game

The Plumb Stones Game Alison Kimbley and Harley Weston Subject Area: Mathematics Strand: Statistics and Probability Grade Level: Six WNCP: Outcome SP6.2: Demonstrate understanding of probability by: determining

### A 20% B 25% C 50% D 80% 2. Which spinner has a greater likelihood of landing on 5 rather than 3?

1. At a middle school, 1 of the students have a cell phone. If a student is chosen at 5 random, what is the probability the student does not have a cell phone? A 20% B 25% C 50% D 80% 2. Which spinner

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### COMPOUND EVENTS. Judo Math Inc.

COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)

### Name Date Class. Identify the sample space and the outcome shown for each experiment. 1. spinning a spinner

Name Date Class 0.5 Practice B Experimental Probability Identify the sample space and the outcome shown for each experiment.. spinning a spinner 2. tossing two coins Write impossible, unlikely, as likely

### Probability Essential Math 12 Mr. Morin

Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected

### Grade 8 Math Assignment: Probability

Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors - The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper

### 13-6 Probabilities of Mutually Exclusive Events

Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome

### Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

### Mathematics (Project Maths Phase 2)

2014. S233 Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination 2014 Mathematics (Project Maths Phase 2) Paper 2 Ordinary Level Monday 9 June Morning, 9:30 to 11:30

### , x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)

1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game

### Data Collection Sheet

Data Collection Sheet Name: Date: 1 Step Race Car Game Play 5 games where player 1 moves on roles of 1, 2, and 3 and player 2 moves on roles of 4, 5, # of times Player1 wins: 3. What is the theoretical

### Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results:

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability

Probability Facts Something to Think About Name Ohio Lottery information: one picks 6 numbers from the set {1,2,3,...49,50}. The state then randomly picks 6 numbers. If you match all 6, you win. The number

### Math. Integrated. Trimester 3 Revision Grade 7. Zayed Al Thani School. ministry of education.

ministry of education Department of Education and Knowledge Zayed Al Thani School www.z2school.com Integrated Math Grade 7 2017-2018 Trimester 3 Revision الوزارة كتاب عن تغني ال المراجعة هذه 0 Ministry

### MATH STUDENT BOOK. 6th Grade Unit 7

MATH STUDENT BOOK 6th Grade Unit 7 Unit 7 Probability and Geometry MATH 607 Probability and Geometry. PROBABILITY 5 INTRODUCTION TO PROBABILITY 6 COMPLEMENTARY EVENTS SAMPLE SPACE 7 PROJECT: THEORETICAL

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.

AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:

### Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

### 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find

### Math June Review: Probability and Voting Procedures

Math - June Review: Probability and Voting Procedures A big box contains 7 chocolate doughnuts and honey doughnuts. A small box contains doughnuts: some are chocolate doughnuts, and the others are honey

### Probabilities of Simple Independent Events

Probabilities of Simple Independent Events Focus on After this lesson, you will be able to solve probability problems involving two independent events In the fairytale Goldilocks and the Three Bears, Goldilocks

### Name: Class: Date: Probability/Counting Multiple Choice Pre-Test

Name: _ lass: _ ate: Probability/ounting Multiple hoice Pre-Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.

### Date. Probability. Chapter

Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

### NAME DATE PERIOD. Study Guide and Intervention

9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.

### MATH Probability Study Guide Exam not valid for Paper Pencil Test Sessions

MATH-.1 Probability Study Guide Exam not valid for Paper Pencil Test Sessions [Exam ID:14919T 1 Johnny is doing a science experiment. During his experiment, Johnny flips a coin and records the temperature

### Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?

Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number

### Fair Game Review. Chapter 9. Simplify the fraction

Name Date Chapter 9 Simplify the fraction. 1. 10 12 Fair Game Review 2. 36 72 3. 14 28 4. 18 26 5. 32 48 6. 65 91 7. There are 90 students involved in the mentoring program. Of these students, 60 are girls.

### Section 7.3 and 7.4 Probability of Independent Events

Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and

### 1. Decide whether the possible resulting events are equally likely. Explain. Possible resulting events

Applications. Decide whether the possible resulting events are equally likely. Explain. Action Possible resulting events a. You roll a number You roll an even number, or you roll an cube. odd number. b.