3. a. P(white) =, or. b. ; the probability of choosing a white block. d. P(white) =, or. 4. a. = 1 b. 0 c. = 0

Size: px
Start display at page:

Download "3. a. P(white) =, or. b. ; the probability of choosing a white block. d. P(white) =, or. 4. a. = 1 b. 0 c. = 0"

Transcription

1 Answers Investigation ACE Assignment Choices Problem. Core, 6 Other Connections, Extensions Problem. Core 6 Other Connections 7 ; unassigned choices from previous problems Problem. Core 7 9 Other Connections 5 ; Extensions 5, 6; unassigned choices from previous problems Problem. Core 0 Other Connections, ; Extensions 7; unassigned choices from previous problems Adapted For suggestions about adapting Exercise 7 and other ACE exercises, see the CMP Special Needs Handbook. Connecting to Prior Units, 6, 5 8: Bits and Pieces I;, 5, 0, : Bits and Pieces II; 9: Data About Us Applications. a. P(green) = P() =, or P() = b. + + = c. ; three of the four blocks are not. d. + =. a. P(green) = 5 6 P() = 5 P(orange) = 5 5 P() =, or 6 5 b = c. P(green) = 8% P() = % P(orange) = 8% P() = 0% d. 8% + % + 8% + 0% = 00% e. or 00%; Possible explanation: If the possible outcomes of an action do not overlap and account for everything that might happen, then the sum of the probabilities of the outcomes will be, or 00%.. a. P(white) =, or 6 P() = 6 P() =, or 6 b. ; the probability of choosing a white block is, so the probability of not choosing a white block is =. c. The probabilities are the same. There will be white blocks, blocks, and 6 blocks, so P(white) = = ; P() =, or ; 6 6 P() =, or. d. P(white) =, or P() =, or 5 P() = e. Answers may vary. Possible answer: Add blocks. Then there are 5 blocks, white blocks, and blocks, for a 5 total of 0 blocks. And P() =, or a. = b. 0 c. = 0 5. a. Since the probability of choosing a white marble is, there must be at least 0 0 marbles in the bag. Investigation Experimental and Theoretical Probability 5 ACE ANSWERS

2 b. Yes. Possible answer: Let s assume the bag contains 60 marbles. Since the probability of choosing is, then of the proposed 60 marbles, or marbles, would be. Since of the 60 marbles must be white, 0 8 would be white. This gives us a total of 0 marbles, so the other 0 marbles would be. Since we get whole numbers of marbles when we do this division, the bag could contain 60 marbles. c. Possible answer: Since of the marbles in 0 the bag are white, and 6 marbles are white, we need to answer this question: of what 0 number equals 6? The answer is 0. This works because P() =, and of 0 = marbles. Since marbles are and 6 are white, there are 0 0 = 0 marbles in the bag. d. Possible answer: You could tell by adding the other two probabilities (of and white) and subtracting the result from : 5 + = + =, and =, or. So the probability of choosing a marble is. 6. a. True. The outcome must be impossible (such as rolling a 7 on a number cube). Figure Sandwich Chicken Hamburger Turkey Vegetable b. True. The outcome must be absolutely certain (such as rolling a number less than 7 on a number cube). c. False. All probabilities are between 0 (impossible) and (absolutely certain), inclusive. 7. a. For paper color followed by marker color, there are outcomes. Fruit Paper Color pink green Marker Color Outcome Outcome pink- pink- pink- green- green- green- Chicken-- Chicken-- Chicken-- Chicken-- Hamburger-- Hamburger-- Hamburger-- Hamburger-- Turkey-- Turkey-- Turkey-- Turkey-- 5 How Likely Is It?

3 b. P(pink-) =. c. P( paper) =. P(not paper) = or P( paper), which is =. d. P( marker) =, or. 8. a. There are different possible lunches. (Figure, previous page) b. The probability of Sol getting his favorite lunch is. Since the cook is not paying any attention to how she puts the lunches together, and there are an equal number of each kind of sandwich, vegetable, and fruit, each of the combinations is equally likely. c. The probability of Sol getting at least one 0 5 of his favorite things is, or. Only of 6 the combinations of items [(hamburger, spinach, apple) and (turkey, spinach, apple)] don t contain at least one of his favorite things. 9. a. The possible outcomes of a spin followed by a roll of the number cube are: (, ), (, ), (, ), (, ), (, 5), (, 6), (, ), (, ), (, ), (, ), (, 5), and (, 6). b. Since (, ) is one of equally likely possibilities, the probability is. c. Since the factors of are and, the only possibilities are (, ), (, ), (, ), and (, ). Thus, there are ways out of equally likely outcomes, so the probability is, or. The multiples of in the data are,, and 6, so the only possibilities are (, ), (, ), and (, 6). Thus, there are ways out of equally-likely outcomes, so the probability is =. 0. The outcomes are the same for the two situations. We can see this by identifying the three coins in the first case with the three tosses in the second. Coin can be heads or tails, just as the first toss can be, and so on. Tossing a coin three times or tossing three coins at once does have the same number of equally likely outcomes which include: HHH, TTT, THT, HTH, TTH, HHT, THH, and HTT. Note: Some students may answer no for this question, which is fine as long as their reasoning is correct. They may say that the outcomes for tossing three coins at once are: three heads, three tails, two heads and one tail, or two tails and one head. These descriptions do describe the outcomes, though notice that these outcomes are not equally likely. This must be the case when determining theoretical probability.. This is not a fair game. There are two winning outcomes for Eva (THT and HTH), but four winning outcomes for Pietro (TTH, HHT, THH, and HTT). Two outcomes (HHH and TTT) have no winners. The game can be made fair by changing the point scheme. Eva can be awarded twice as many points as Pietro for each winning combination.. a. Odd-Odd, Odd-Even, Even-Odd, Even-Even b. Possible answer: If the sum of the two number cubes is even, Player scores a point. If the sum of the two number cubes is odd, Player scores a point. c. Possible answer: If the product of the two number cubes is even, Player scores a point. If the product of the two number cubes is odd, Player scores a point. d. As with tossing a coin, considering even and odd on a number cube gives two equally likely outcomes. The game suggested in part (b) is like the game in Problem., One More Try. In this game, a match is two evens or two odds, whose sum is even. A no-match is one of each, with an odd sum. The games that students might imagine for part (b) might not be as easily connected to the two coins game. Connections 5. a. = = b. 7 = = 6.5 c. = = ACE ANSWERS Investigation Experimental and Theoretical Probability 55

4 . Parts (a) and (b) are both equal to. 5. Possible answer: For (a), if you are choosing one marble out of a bag that has, and white marbles, then the sum represents the sum of all the probabilities for each color. 6. a. Bly s probability is closer to. If students convert the fractions into decimal form they will get that Bly s probability is 0.75 and Kara s probability is about 0.7. b. Possible answers: Tossing a number cube and finding the probability that you will roll a number greater than. Choosing a block from a bag containing one, one, and one green block. 7. Answers will vary. Students answers should be fractions between and including 0 and (or percents between and including 0 and 00), and their reasoning should justify their answer. 5. A 6. H 7. B 8. G 9. a. From counting, we know there are 8 students in the class. Since choosing each student is equally likely, and of the 8 have first names that begin with J, the probability is, or. 8 7 b. There are 7 names that begin with a letter from G through S, so the probability of 7 choosing a student in this range is. 8 c., because there is only one person in the 8 class whose first name begins with K. d. The class now has 0 students, and since there are still only students whose names begin with J, the new probability is = a. You need to figure to figure the 7 probability of white. You need to find + + and subtract from to figure 7 the probability of. b. The total number of marbles has to be a multiple of, 7, and since these are the denominators of the fractions that give the probabilities. c. No. The probability of green is. There would have to be green marbles in the bag. There can be any multiple of marbles in the bag a. b. = 7. Game : possible, equally likely, fair Game : possible, unlikely, unfair Game : possible, equally likely, fair Game : possible, unlikely, unfair Game 5: not possible, impossible, unfair. a. b. 66 c. Yes; students might make a tree to show all the possibilities:,,,, 5, 6,,,,, 5, 6,, and. d. Karen wins on,,,,,, 5, and 6. Mia wins on, 6,,, 6,, 5, 56, and 6. So Mia has a greater chance of winning than Karen. Students can do this experimentally, but the theoretical probabilities are so close that it would be hard for them to design an experiment with a large enough number of trials to arrive at the correct conclusion. Extensions. Answers will vary. If students conduct enough trials, the two types of probability should be close. 5. Contestants should think twice before playing this game. A contestant wins by choosing the combination RR, YY, or BB, so P(match) =, or, and P(no match) = =. 9 Students may argue that having a in chance of winning $5,000 is worth the risk of losing the prizes won so far. 6. a. Bag Bag Outcome How Likely Is It?

5 b. c. 9 d. No; Jason didn t list all the outcomes for Bag. He only has two outcomes, which are and not-, and these are not equally-likely outcomes. He should have, and under Bag. For each outcome starting under Bag and going to Bag, he should have three branches, one for, one for, and one for. (Note: Make sure that students notice that the outcomes for each action in the diagram, in this case choosing from Bag and choosing from Bag, must have all the possible outcomes accounted for.) 7. a. HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, TTHH, THTH, TTTH, TTHT, THTT, HTTT, TTTT b. c. Answers will vary. 6 Possible Answers to Mathematical Reflections. If you analyze a situation by thinking about the range of possible equally likely outcomes, you can list all the possible outcomes and find the theoretical probability of an event. For example, to find the theoretical probability of choosing a block from a bag of blocks you would compute: number of blocks P() = total number of blocks This is called the theoretical probability because it is based on analyzing a situation to determine what should happen in theory.. a. Not necessarily; their experiments will probably give them different results, but their results should be close, especially if they each conducted a large number of trials. b. Yes; the theoretical probability in a given situation is the same no matter who finds it. c. They probably won t get the same results but their results will probably be close, especially if the experimental probability is based on a large number of trials. ACE ANSWERS Investigation Experimental and Theoretical Probability 57

b. 2 ; the probability of choosing a white d. P(white) 25, or a a. Since the probability of choosing a

b. 2 ; the probability of choosing a white d. P(white) 25, or a a. Since the probability of choosing a Applications. a. P(green) =, P(yellow) = 2, or 2, P(red) = 2 ; three of the four blocks are not red. d. 2. a. P(green) = 2 25, P(purple) = 6 25, P(orange) = 2 25, P(yellow) = 5 25, or 5 2 6 2 5 25 25 25

More information

Applications. 28 How Likely Is It? P(green) = 7 P(yellow) = 7 P(red) = 7. P(green) = 7 P(purple) = 7 P(orange) = 7 P(yellow) = 7

Applications. 28 How Likely Is It? P(green) = 7 P(yellow) = 7 P(red) = 7. P(green) = 7 P(purple) = 7 P(orange) = 7 P(yellow) = 7 Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability that you will choose each color. P(green)

More information

= = 0.1%. On the other hand, if there are three winning tickets, then the probability of winning one of these winning tickets must be 3 (1)

= = 0.1%. On the other hand, if there are three winning tickets, then the probability of winning one of these winning tickets must be 3 (1) MA 5 Lecture - Binomial Probabilities Wednesday, April 25, 202. Objectives: Introduce combinations and Pascal s triangle. The Fibonacci sequence had a number pattern that we could analyze in different

More information

2. A bubble-gum machine contains 25 gumballs. There are 12 green, 6 purple, 2 orange, and 5 yellow gumballs.

2. A bubble-gum machine contains 25 gumballs. There are 12 green, 6 purple, 2 orange, and 5 yellow gumballs. A C E Applications Connections Extensions Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability

More information

Counting methods (Part 4): More combinations

Counting methods (Part 4): More combinations April 13, 2009 Counting methods (Part 4): More combinations page 1 Counting methods (Part 4): More combinations Recap of last lesson: The combination number n C r is the answer to this counting question:

More information

Exercise Class XI Chapter 16 Probability Maths

Exercise Class XI Chapter 16 Probability Maths Exercise 16.1 Question 1: Describe the sample space for the indicated experiment: A coin is tossed three times. A coin has two faces: head (H) and tail (T). When a coin is tossed three times, the total

More information

Date Learning Target/s Classwork Homework Self-Assess Your Learning. Pg. 2-3: WDYE 2.3: Designing a Fair Game

Date Learning Target/s Classwork Homework Self-Assess Your Learning. Pg. 2-3: WDYE 2.3: Designing a Fair Game What Do You Expect: Probability and Expected Value Name: Per: Investigation 2: Experimental and Theoretical Probability Date Learning Target/s Classwork Homework Self-Assess Your Learning Mon, Feb. 29

More information

Class XII Chapter 13 Probability Maths. Exercise 13.1

Class XII Chapter 13 Probability Maths. Exercise 13.1 Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

More information

HUDM4122 Probability and Statistical Inference. February 2, 2015

HUDM4122 Probability and Statistical Inference. February 2, 2015 HUDM4122 Probability and Statistical Inference February 2, 2015 In the last class Covariance Correlation Scatterplots Simple linear regression Questions? Comments? Today Ch. 4.1-4.3 in Mendenhall, Beaver,

More information

Practice Ace Problems

Practice Ace Problems Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according

More information

RANDOM EXPERIMENTS AND EVENTS

RANDOM EXPERIMENTS AND EVENTS Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

More information

MATH , Summer I Homework - 05

MATH , Summer I Homework - 05 MATH 2300-02, Summer I - 200 Homework - 05 Name... TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Due on Tuesday, October 26th ) True or False: If p remains constant

More information

Lesson 10: Using Simulation to Estimate a Probability

Lesson 10: Using Simulation to Estimate a Probability Lesson 10: Using Simulation to Estimate a Probability Classwork In previous lessons, you estimated probabilities of events by collecting data empirically or by establishing a theoretical probability model.

More information

Random Variables. Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5. (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) }

Random Variables. Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5. (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) } Random Variables When we perform an experiment, we are often interested in recording various pieces of numerical data for each trial. For example, when a patient visits the doctor s office, their height,

More information

Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5 {(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

Outcome X (1, 1) 2 (2, 1) 3 (3, 1) 4 (4, 1) 5 {(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)} Section 8: Random Variables and probability distributions of discrete random variables In the previous sections we saw that when we have numerical data, we can calculate descriptive statistics such as

More information

Probability Assignment

Probability Assignment Name Probability Assignment Student # Hr 1. An experiment consists of spinning the spinner one time. a. How many possible outcomes are there? b. List the sample space for the experiment. c. Determine the

More information

Beginnings of Probability I

Beginnings of Probability I Beginnings of Probability I Despite the fact that humans have played games of chance forever (so to speak), it is only in the 17 th century that two mathematicians, Pierre Fermat and Blaise Pascal, set

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 12: More Probability Tessa L. Childers-Day UC Berkeley 10 July 2014 By the end of this lecture... You will be able to: Use the theory of equally likely

More information

Random Variables. A Random Variable is a rule that assigns a number to each outcome of an experiment.

Random Variables. A Random Variable is a rule that assigns a number to each outcome of an experiment. Random Variables When we perform an experiment, we are often interested in recording various pieces of numerical data for each trial. For example, when a patient visits the doctor s office, their height,

More information

Copyright 2015 Edmentum - All rights reserved Picture is not drawn to scale.

Copyright 2015 Edmentum - All rights reserved Picture is not drawn to scale. Study Island Copyright 2015 Edmentum - All rights reserved. Generation Date: 05/26/2015 Generated By: Matthew Beyranevand Students Entering Grade 8 Part 2 Questions and Answers Compute with Rational Numbers

More information

Math 146 Statistics for the Health Sciences Additional Exercises on Chapter 3

Math 146 Statistics for the Health Sciences Additional Exercises on Chapter 3 Math 46 Statistics for the Health Sciences Additional Exercises on Chapter 3 Student Name: Find the indicated probability. ) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH

More information

A C E. Answers Investigation 3. Applications. 12, or or 1 4 c. Choose Spinner B, because the probability for hot dogs on Spinner A is

A C E. Answers Investigation 3. Applications. 12, or or 1 4 c. Choose Spinner B, because the probability for hot dogs on Spinner A is Answers Investigation Applications. a. Answers will vary, but should be about for red, for blue, and for yellow. b. Possible answer: I divided the large red section in half, and then I could see that the

More information

Lesson Lesson 3.7 ~ Theoretical Probability

Lesson Lesson 3.7 ~ Theoretical Probability Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left

More information

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 1-3 Lesson 2: Choosing Marbles

More information

Bellwork Write each fraction as a percent Evaluate P P C C 6

Bellwork Write each fraction as a percent Evaluate P P C C 6 Bellwork 2-19-15 Write each fraction as a percent. 1. 2. 3. 4. Evaluate. 5. 6 P 3 6. 5 P 2 7. 7 C 4 8. 8 C 6 1 Objectives Find the theoretical probability of an event. Find the experimental probability

More information

What Do You Expect? Concepts

What Do You Expect? Concepts Important Concepts What Do You Expect? Concepts Examples Probability A number from 0 to 1 that describes the likelihood that an event will occur. Theoretical Probability A probability obtained by analyzing

More information

Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is

More information

Grade 6 Math Circles Fall Oct 14/15 Probability

Grade 6 Math Circles Fall Oct 14/15 Probability 1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

More information

PRE TEST KEY. Math in a Cultural Context*

PRE TEST KEY. Math in a Cultural Context* PRE TEST KEY Salmon Fishing: Investigations into A 6 th grade module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: PRE TEST KEY Grade: Teacher: School: Location of School:

More information

Algebra I Notes Unit One: Real Number System

Algebra I Notes Unit One: Real Number System Syllabus Objectives: 1.1 The student will organize statistical data through the use of matrices (with and without technology). 1.2 The student will perform addition, subtraction, and scalar multiplication

More information

STATISTICS and PROBABILITY GRADE 6

STATISTICS and PROBABILITY GRADE 6 Kansas City Area Teachers of Mathematics 2015 KCATM Math Competition STATISTICS and PROBABILITY GRADE 6 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may use

More information

Statistics and Probability

Statistics and Probability Lesson Statistics and Probability Name Use Centimeter Cubes to represent votes from a subgroup of a larger population. In the sample shown, the red cubes are modeled by the dark cubes and represent a yes

More information

Lesson 16.1 Assignment

Lesson 16.1 Assignment Lesson 16.1 Assignment Name Date Rolling, Rolling, Rolling... Defining and Representing Probability 1. Rasheed is getting dressed in the dark. He reaches into his sock drawer to get a pair of socks. He

More information

NumberSense Companion Workbook Grade 4

NumberSense Companion Workbook Grade 4 NumberSense Companion Workbook Grade 4 Sample Pages (ENGLISH) Working in the NumberSense Companion Workbook The NumberSense Companion Workbooks address measurement, spatial reasoning (geometry) and data

More information

FALL 2012 MATH 1324 REVIEW EXAM 4

FALL 2012 MATH 1324 REVIEW EXAM 4 FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die

More information

EECS 203 Spring 2016 Lecture 15 Page 1 of 6

EECS 203 Spring 2016 Lecture 15 Page 1 of 6 EECS 203 Spring 2016 Lecture 15 Page 1 of 6 Counting We ve been working on counting for the last two lectures. We re going to continue on counting and probability for about 1.5 more lectures (including

More information

When a number cube is rolled once, the possible numbers that could show face up are

When a number cube is rolled once, the possible numbers that could show face up are C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that

More information

Probability: Terminology and Examples Spring January 1, / 22

Probability: Terminology and Examples Spring January 1, / 22 Probability: Terminology and Examples 18.05 Spring 2014 January 1, 2017 1 / 22 Board Question Deck of 52 cards 13 ranks: 2, 3,..., 9, 10, J, Q, K, A 4 suits:,,,, Poker hands Consists of 5 cards A one-pair

More information

Counting and Probability

Counting and Probability 0838 ch0_p639-693 0//007 0:3 PM Page 633 CHAPTER 0 Counting and Probability The design below is like a seed puff of a dandelion just before it is dispersed by the wind. The design shows the outcomes from

More information

Section Theoretical and Experimental Probability...Wks 3

Section Theoretical and Experimental Probability...Wks 3 Name: Class: Date: Section 6.8......Theoretical and Experimental Probability...Wks 3. Eight balls numbered from to 8 are placed in a basket. One ball is selected at random. Find the probability that it

More information

Page 1 of 22. Website: Mobile:

Page 1 of 22. Website:    Mobile: Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

More information

UNIT 4 APPLICATIONS OF PROBABILITY Lesson 1: Events. Instruction. Guided Practice Example 1

UNIT 4 APPLICATIONS OF PROBABILITY Lesson 1: Events. Instruction. Guided Practice Example 1 Guided Practice Example 1 Bobbi tosses a coin 3 times. What is the probability that she gets exactly 2 heads? Write your answer as a fraction, as a decimal, and as a percent. Sample space = {HHH, HHT,

More information

PRE TEST. Math in a Cultural Context*

PRE TEST. Math in a Cultural Context* P grade PRE TEST Salmon Fishing: Investigations into A 6P th module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: Grade: Teacher: School: Location of School: Date: *This

More information

PROBABILITY M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

PROBABILITY M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier Mathematics Revision Guides Probability Page 1 of 18 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier PROBABILITY Version: 2.1 Date: 08-10-2015 Mathematics Revision Guides Probability

More information

Date Learning Target/s Classwork Homework Self-Assess Your Learning. Pg. 2-3: WDYE 3.1: Designing a Spinner. Pg. 5-6: WDYE 3.2: Making Decisions

Date Learning Target/s Classwork Homework Self-Assess Your Learning. Pg. 2-3: WDYE 3.1: Designing a Spinner. Pg. 5-6: WDYE 3.2: Making Decisions What Do You Expect: Probability and Expected Value Name: Per: Investigation 3: Making Decisions and Investigation 4: Area Models Date Learning Target/s Classwork Homework Self-Assess Your Learning Fri,

More information

What Do You Expect Unit (WDYE): Probability and Expected Value

What Do You Expect Unit (WDYE): Probability and Expected Value Name: Per: What Do You Expect Unit (WDYE): Probability and Expected Value Investigations 1 & 2: A First Look at Chance and Experimental and Theoretical Probability Date Learning Target/s Classwork Homework

More information

Name: Class: Date: Probability/Counting Multiple Choice Pre-Test

Name: Class: Date: Probability/Counting Multiple Choice Pre-Test Name: _ lass: _ ate: Probability/ounting Multiple hoice Pre-Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1 The dartboard has 8 sections of equal area.

More information

Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES

Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times

More information

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)

1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate

More information

Practice 9-1. Probability

Practice 9-1. Probability Practice 9-1 Probability You spin a spinner numbered 1 through 10. Each outcome is equally likely. Find the probabilities below as a fraction, decimal, and percent. 1. P(9) 2. P(even) 3. P(number 4. P(multiple

More information

1. Decide whether the possible resulting events are equally likely. Explain. Possible resulting events

1. Decide whether the possible resulting events are equally likely. Explain. Possible resulting events Applications. Decide whether the possible resulting events are equally likely. Explain. Action Possible resulting events a. You roll a number You roll an even number, or you roll an cube. odd number. b.

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by

More information

Probability of Independent and Dependent Events

Probability of Independent and Dependent Events 706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

More information

Chapter 10 Practice Test Probability

Chapter 10 Practice Test Probability Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its

More information

Probability Exercise 2

Probability Exercise 2 Probability Exercise 2 1 Question 9 A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will

More information

Chance and Probability

Chance and Probability F Student Book Name Series F Contents Topic Chance and probability (pp. 0) ordering events relating fractions to likelihood chance experiments fair or unfair the mathletics cup create greedy pig solve

More information

SERIES Chance and Probability

SERIES Chance and Probability F Teacher Student Book Name Series F Contents Topic Section Chance Answers and (pp. Probability 0) (pp. 0) ordering chance and events probability_ / / relating fractions to likelihood / / chance experiments

More information

Lesson 3: Chance Experiments with Equally Likely Outcomes

Lesson 3: Chance Experiments with Equally Likely Outcomes Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records

More information

Name Class Date. Introducing Probability Distributions

Name Class Date. Introducing Probability Distributions Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

More information

MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK. 7th Grade Unit 6 MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

More information

Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers

Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers Basic Probability Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show

More information

A referee flipped a fair coin to decide which football team would start the game with

A referee flipped a fair coin to decide which football team would start the game with Probability Lesson.1 A referee flipped a fair coin to decide which football team would start the game with the ball. The coin was just as likely to land heads as tails. Which way do you think the coin

More information

STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes

STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes Pengyuan (Penelope) Wang May 25, 2011 Review We have discussed counting techniques in Chapter 1. (Principle

More information

Essential Question How can you list the possible outcomes in the sample space of an experiment?

Essential Question How can you list the possible outcomes in the sample space of an experiment? . TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment

More information

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY

TJP TOP TIPS FOR IGCSE STATS & PROBABILITY TJP TOP TIPS FOR IGCSE STATS & PROBABILITY Dr T J Price, 2011 First, some important words; know what they mean (get someone to test you): Mean the sum of the data values divided by the number of items.

More information

Probability Quiz Review Sections

Probability Quiz Review Sections CP1 Math 2 Unit 9: Probability: Day 7/8 Topic Outline: Probability Quiz Review Sections 5.02-5.04 Name A probability cannot exceed 1. We express probability as a fraction, decimal, or percent. Probabilities

More information

Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability

Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Math 147 Elementary Probability/Statistics I Additional Exercises on Chapter 4: Probability Student Name: Find the indicated probability. 1) If you flip a coin three times, the possible outcomes are HHH

More information

Use this information to answer the following questions.

Use this information to answer the following questions. 1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following

More information

In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged?

In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged? -Pick up Quiz Review Handout by door -Turn to Packet p. 5-6 In how many ways can the letters of SEA be arranged? In how many ways can the letters of SEE be arranged? - Take Out Yesterday s Notes we ll

More information

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

More information

Common Core Math Tutorial and Practice

Common Core Math Tutorial and Practice Common Core Math Tutorial and Practice TABLE OF CONTENTS Chapter One Number and Numerical Operations Number Sense...4 Ratios, Proportions, and Percents...12 Comparing and Ordering...19 Equivalent Numbers,

More information

Study Guide Probability SOL s 6.16, 7.9, & 7.10

Study Guide Probability SOL s 6.16, 7.9, & 7.10 Study Guide Probability SOL s 6.16, 7.9, & 7.10 What do I need to know for the upcoming assessment? Find the probability of simple events; Determine if compound events are independent or dependent; Find

More information

Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate

More information

e. Are the probabilities you found in parts (a)-(f) experimental probabilities or theoretical probabilities? Explain.

e. Are the probabilities you found in parts (a)-(f) experimental probabilities or theoretical probabilities? Explain. 1. Josh is playing golf. He has 3 white golf balls, 4 yellow golf balls, and 1 red golf ball in his golf bag. At the first hole, he randomly draws a ball from his bag. a. What is the probability he draws

More information

MATH STUDENT BOOK. 6th Grade Unit 7

MATH STUDENT BOOK. 6th Grade Unit 7 MATH STUDENT BOOK 6th Grade Unit 7 Unit 7 Probability and Geometry MATH 607 Probability and Geometry. PROBABILITY 5 INTRODUCTION TO PROBABILITY 6 COMPLEMENTARY EVENTS SAMPLE SPACE 7 PROJECT: THEORETICAL

More information

Homework #1-19: Use the Counting Principle to answer the following questions.

Homework #1-19: Use the Counting Principle to answer the following questions. Section 4.3: Tree Diagrams and the Counting Principle Homework #1-19: Use the Counting Principle to answer the following questions. 1) If two dates are selected at random from the 365 days of the year

More information

Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability

More information

Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work.

Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work. Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20 Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. 1 Review U4H1 2 Theoretical Probability 3 Experimental Probability

More information

Name: Unit 7 Study Guide 1. Use the spinner to name the color that fits each of the following statements.

Name: Unit 7 Study Guide 1. Use the spinner to name the color that fits each of the following statements. 1. Use the spinner to name the color that fits each of the following statements. green blue white white blue a. The spinner will land on this color about as often as it lands on white. b. The chance of

More information

Find the probability of an event by using the definition of probability

Find the probability of an event by using the definition of probability LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

More information

Use a tree diagram to find the number of possible outcomes. 2. How many outcomes are there altogether? 2.

Use a tree diagram to find the number of possible outcomes. 2. How many outcomes are there altogether? 2. Use a tree diagram to find the number of possible outcomes. 1. A pouch contains a blue chip and a red chip. A second pouch contains two blue chips and a red chip. A chip is picked from each pouch. The

More information

Adriana tosses a number cube with faces numbered 1 through 6 and spins the spinner shown below at the same time.

Adriana tosses a number cube with faces numbered 1 through 6 and spins the spinner shown below at the same time. Domain 5 Lesson 9 Compound Events Common Core Standards: 7.SP.8.a, 7.SP.8.b, 7.SP.8.c Getting the Idea A compound event is a combination of two or more events. Compound events can be dependent or independent.

More information

Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( ) Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

More information

ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS

ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS Math 7 Probability Test Review Name: Date Hour Directions: Read each question carefully. Answer each question completely. ALL FRACTIONS SHOULD BE IN SIMPLEST TERMS! Show all your work for full credit!

More information

CCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES:

CCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: CCM6+7+ Unit 11 ~ Page 1 CCM6+7+ UNIT 11 PROBABILITY Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: Unit 11 Vocabulary List 2 Simple Event Probability 3-7 Expected Outcomes Making Predictions 8-9 Theoretical

More information

Now let s figure the probability that Angelina picked a green marble if Marc did not replace his marble.

Now let s figure the probability that Angelina picked a green marble if Marc did not replace his marble. Find the probability of an event with or without replacement : The probability of an outcome of an event is the ratio of the number of ways that outcome can occur to the total number of different possible

More information

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many real-world fields, such as insurance, medical research, law enforcement, and political science. Objectives:

More information

Order the fractions from least to greatest. Use Benchmark Fractions to help you. First try to decide which is greater than ½ and which is less than ½

Order the fractions from least to greatest. Use Benchmark Fractions to help you. First try to decide which is greater than ½ and which is less than ½ Outcome G Order the fractions from least to greatest 4 1 7 4 5 3 9 5 8 5 7 10 Use Benchmark Fractions to help you. First try to decide which is greater than ½ and which is less than ½ Likelihood Certain

More information

Probability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible

Probability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen

More information

Math 7 /Unit 5 Practice Test: Probability

Math 7 /Unit 5 Practice Test: Probability Math 7 /Unit 5 Practice Test: Probability Name Date 1. Define probability. 2. Define experimental probability.. Define sample space for an experiment 4. What makes experimental probability different from

More information

TEKSING TOWARD STAAR MATHEMATICS GRADE 7. Projection Masters

TEKSING TOWARD STAAR MATHEMATICS GRADE 7. Projection Masters TEKSING TOWARD STAAR MATHEMATICS GRADE 7 Projection Masters Six Weeks 1 Lesson 1 STAAR Category 1 Grade 7 Mathematics TEKS 7.2A Understanding Rational Numbers A group of items or numbers is called a set.

More information

Probability: Part 1 1/28/16

Probability: Part 1 1/28/16 Probability: Part 1 1/28/16 The Kind of Studies We Can t Do Anymore Negative operant conditioning with a random reward system Addictive behavior under a random reward system FBJ murine osteosarcoma viral

More information

WORKSHOP SIX. Probability. Chance and Predictions. Math Awareness Workshops

WORKSHOP SIX. Probability. Chance and Predictions. Math Awareness Workshops WORKSHOP SIX 1 Chance and Predictions Math Awareness Workshops 5-8 71 Outcomes To use ratios and a variety of vocabulary to describe the likelihood of an event. To use samples to make predictions. To provide

More information

Chance and Probability

Chance and Probability Series Student Chance and Probability My name F Copyright 009 P Learning. All rights reserved. First edition printed 009 in Australia. A catalogue record for this book is available from P Learning Ltd.

More information

Functional Skills Mathematics

Functional Skills Mathematics Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page - Combined Events D/L. Page - 9 West Nottinghamshire College D/L. Information Independent Events

More information

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.

Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes. Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation

More information

Math 7 Notes - Unit 7B (Chapter 11) Probability

Math 7 Notes - Unit 7B (Chapter 11) Probability Math 7 Notes - Unit 7B (Chapter 11) Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare

More information

Unit 7 Central Tendency and Probability

Unit 7 Central Tendency and Probability Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at

More information

Part 1: I can express probability as a fraction, decimal, and percent

Part 1: I can express probability as a fraction, decimal, and percent Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

More information

Worksheets for GCSE Mathematics. Probability. mr-mathematics.com Maths Resources for Teachers. Handling Data

Worksheets for GCSE Mathematics. Probability. mr-mathematics.com Maths Resources for Teachers. Handling Data Worksheets for GCSE Mathematics Probability mr-mathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales

More information