# Compound Events. Identify events as simple or compound.

Size: px
Start display at page:

Transcription

1 11.1 Compound Events Lesson Objectives Understand compound events. Represent compound events. Vocabulary compound event possibility diagram simple event tree diagram Understand Compound Events. A compound event consists of two or more simple events occurring together or one after another. For example, tossing a coin for heads or rolling a 3 on a six-sided number die are both simple events. But tossing a coin for heads and rolling a 3 on a six-sided number die is a compound event. Example 1 Identify events as simple or compound. ell whether each event is a simple or compound event. State the single event or identify the simple events that form the compound event. a) Getting a number less than 2 or greater than 4 when spinning the spinner once his is a simple event. here is one event: getting a number less than 2 or greater than 4 from one spin of the spinner b) Getting a number less than 2 or greater than 4 when spinning the spinner two times consecutively his is a compound event. here are two simple events: getting a number less than 2 or greater than 4 one after another. c) Getting heads when a coin is tossed and getting a 3 when a six-sided number die is rolled his is a compound event. here are two simple events: getting heads on a coin and a 3 on a six-sided number die. Lesson 11.1 Compound Events 219

2 Guided Practice ell whether each outcome is from a simple or compound event. If it is a compound event, identify the simple events that form the compound event. 1 Obtaining two heads when two coins are tossed 2 Winning a football game 3 Getting a number less than 4 or greater than 5 when a fair six-sided number die is rolled 4 Rolling two fair six-sided number dice and obtaining a sum of 10 from the throws Represent Compound Events. Suppose you roll a fair six-sided number die and toss a fair coin. he simple events that form this compound event are rolling a number on the number die and tossing the coin for heads and tails. here are six possible outcomes when a number die is rolled. he sample space is {1, 2, 3, 4, 5, 6}. here are two possible outcomes when a coin is tossed. hey are {, }, where denotes the outcome eads, and denotes the outcome ails. he braces { } are used to list the set of possible outcomes in a sample space or outcomes favorable to an event. 220 Chapter 11 Probability

3 here are many ways to represent and display all the outcomes of a compound event. An organized list for the outcomes of tossing a number die and a coin is shown here. Die Coin Outcome A two-way grid or a table is a type of possibility diagram that can help you visualize all the possible outcomes of a compound event. You can also circle or mark the favorable outcomes. List the outcomes for rolling a die on the horizontal axis and the outcomes for tossing a coin on the vertical axis. Note that each intersection of grid lines represents a possible outcome of the compound event. Coin ossed Number Die Rolled represents heads represents tails hink Math ow can the possibility diagram help you determine the number of possible outcomes in a sample space of a compound event without counting? Because the two simple events occur together, the order of the events is not important. So, you can use a dot ( ) to indicate each possible outcome. From the diagram, you can see that there are 12 possible outcomes in the sample space for this compound event. Notice that the outcomes in the two-way grid are the same as those in the organized list for this sample space. Continue on next page Lesson 11.1 Compound Events 221

4 Another diagram that is used to display the outcomes of a compound event is a table of ordered pairs Spinner 1 Spinner 2 Suppose there are two spinners, with each spinner divided into three equally-sized angles at the center. he row labels and column labels of the table list the outcomes of each simple event. Each possible outcome is written in the diagram as an ordered pair: (first event, second event). You can see that there are possible outcomes in the sample space. Spinner Spinner 2 1 (1, 1) (2, 1) (3, 1) 2 (1, 2) (2, 2) (3, 2) 3 (1, 3) (2, 3) (3, 3) Example 2 Represent all possible outcomes of a compound event. Represent and tell the number of possible outcomes for each compound event described. a) he results of rolling two fair six-sided number dice are added. 2nd oss 1st oss Math Note You can write the operation of the compound event at the top left cell of the table to indicate that you are finding the sum of the outcomes of two events. here are 36 possible outcomes. 222 Chapter 11 Probability

5 b) he two spinners shown below are spun Spinner 1 3 Spinner 2 Spinner Spinner 2 1 (0, 1) (1, 1) (2, 1) (4, 1) 2 (0, 2) (1, 2) (2, 2) (4, 2) 3 (0, 3) (1, 3) (2, 3) (4, 3) here are 12 possible outcomes. c) One drawer has four shirts: 1 blue, 1 yellow, 1 red, and 1 gray. Another drawer has two pairs of socks: 1 gray and 1 black. A shirt and a pair of socks are taken from its drawer. Socks Gray Black Blue Yellow Red Shirts Gray here are 8 possible outcomes. Guided Practice Represent and tell the number of possible outcomes for each compound event described. 5 he results of tossing two fair coins together 6 he results of rolling two fair six-sided number dice are multiplied. 7 A fair six-sided number die and a fair four-sided number die labeled 1 to 4 are rolled. he results that face down on both number dice are recorded. Lesson 11.1 Compound Events 223

6 Represent Compound Events Using ree Diagrams. A tree diagram is another type of possibility diagram that can be used to represent a compound event. he tree diagram below represents the outcomes of a simple event, tossing a fair coin. he branches from the node represent all possible outcomes. 1 2 Node 1 2 Branches represents heads represents tails When all the branches represent equally likely outcomes, you can omit labeling the probabilities on the branches. For drawing any tree diagram, you should take note of the following: Each branch starts from the same node. he number of branches indicates the number of outcomes the event has. he outcome for the event is written at the end of a branch. he probability of the outcome of an event is written in parentheses along the branch. he probabilities of the branches from each node must add up to 1. If the coin is tossed twice, one after another, the tree diagram looks like this: 1st oss 2nd oss Outcome (, ) Math Note Listing the outcomes in a column is optional in a tree diagram. You can also (, ) determine the number of outcomes, when all equally likely outcomes are shown, by counting the number of (, ) branches at the last event in the tree. (, ) represents heads represents tails You can see from the tree diagram that there are 4 equally likely possible outcomes. 224 Chapter 11 Probability

7 Example 3 Represent a compound event using a tree diagram. a) Robyn has a fair spinner and a coin as shown. She first spins the spinner once and then tosses the coin. Draw a tree diagram to represent all possible outcomes. hen tell the number of possible outcomes. R G B First, draw branches for each outcome of the first event, the spinner. he end of each branch becomes a node for the second event, tossing a coin. Spinner Coin Outcome (R, ) R (R, ) (B, ) B (B, ) G (G, ) (G, ) R represents red B represents blue G represents green represents heads represents tails here are 6 possible outcomes in this compound event. hink Math ow would you draw the tree diagram if the two simple events are switched: first, toss heads or tails on the coin, and second, spin a color on the spinner? Continue on next page Lesson 11.1 Compound Events 225

8 b) Eric has a yellow, a pink, and a green highlighter in his pencil case. e also has 1 red pen and 2 black pens. Eric randomly selects a highlighter and a pen. Draw a tree diagram to represent all possible outcomes. hen tell the number of possible outcomes. ighlighter Pen Outcome R (Y, R) Y B (Y, B) B R (Y, B) (P, R) P B (P, B) G B (P, B) R (G, R) B (G, B) B (G, B) Y represents yellow P represents pink G represents green R represents red B represents black here are 9 possible outcomes in this compound event. hink Math Are the outcomes shown at the end of the branches equally likely to occur? Explain. Guided Practice For each compound event, draw a tree diagram to represent the possible outcomes. hen tell the number of possible outcomes. 8 Joshua has two bags. he first bag contains 2 blue beads and 1 green bead. he second bag contains 3 lettered cards with the letters P, Q, and R. Joshua randomly takes an item from the first bag, and then from the second bag. 9 A fair coin is tossed, and then a fair four-sided color die with faces painted yellow, green, blue, and black is rolled. he color facing down is the result recorded. 226 Chapter 11 Probability

9 Practice 11.1 ell whether each statement is rue or False. 1 Selecting the letter A from the word PROBABILIY is a compound event. 2 Selecting the letter B from the word BASEBALL and then from the word ABLE is a simple event. 3 ossing a fair six-sided number die to get either an even number or a five is a compound event. 4 Umberto has 3 red cards and 4 blue cards. Drawing two red cards in a row, without replacing the first card before drawing the second card, is a compound event. ell whether each event is a simple or compound event. If it is a compound event, identify the simple events that form the compound event. 5 Getting a 6 when a fair six-sided number die is rolled. 6 Rolling three fair six-sided number dice and obtaining a sum of 18 from the throws. 7 Getting an eighteen when a fair twenty-sided number die is rolled. 8 Susan has 3 red cards and 4 blue cards. She first draws a blue card. Without replacing the first card, she then draws another blue card. Solve. Show your work. 9 In the top drawer, there are two battery-operated flashlights: red and yellow. In the second drawer, there are three packages of batteries: sizes AA, C, and D. A flashlight and a package of batteries are randomly selected. a) Draw a possibility diagram to represent all possible outcomes. b) ow many possible outcomes are there? 10 wo electronic spinners, A and B, are spun by pressing a button. Spinner A has four sections labeled 1 to 4, while B has three sections, labeled 1 to 3. Spinner B, due to a technical error, will never land on number 2 if spinner A lands on a 4. a) Draw a possibility diagram to represent all possible outcomes. b) ow many possible outcomes are there? Lesson 11.1 Compound Events 227

10 11 Winston has two boxes. he first box has 3 black pens and 1 red pen. he second box has 1 green ball and 1 yellow ball. Draw a tree diagram to represent all possible outcomes for randomly drawing a pen and a ball from each box. hen tell the number of possible outcomes. 12 Seraphina first tosses a fair six-sided number die. She then tosses a fair coin. Draw a tree diagram to represent all possible outcomes. 13 A game was designed such that a participant needs to accomplish 2 rounds to be considered the overall winner. he first round is to roll a 4 from a fair four-sided number die labeled 1 to 4. he result recorded is the number facing down. he second round is to randomly draw a red ball from a box of 2 differently colored balls. a) Draw a tree diagram to represent all possible outcomes. b) ow many possible outcomes are there? c) If the participant first draws the colored ball and then rolls the four-sided number die, will the number of possible outcomes be the same? Draw a tree diagram to explain your reasoning. 14 Zoe first rolls a fair four-sided number die labeled 1 to 4. hen she rolls another fair four-sided number die labeled 2 to 5. he results recorded are the numbers facing down. a) Draw a possibility diagram to find the number of favorable outcomes for an odd sum. b) Draw a possibility diagram to find the number of favorable outcomes for a difference greater than Chapter 11 Probability

### Independent Events B R Y

. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent

### Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

### Lesson 11.3 Independent Events

Lesson 11.3 Independent Events Draw a tree diagram to represent each situation. 1. Popping a balloon randomly from a centerpiece consisting of 1 black balloon and 1 white balloon, followed by tossing a

### Name Class Date. Introducing Probability Distributions

Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

### Lesson 3: Chance Experiments with Equally Likely Outcomes

Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records

### Part 1: I can express probability as a fraction, decimal, and percent

Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

### 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find

### SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability

SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability Name Period Write all probabilities as fractions in reduced form! Use the given information to complete problems 1-3. Five students have the

### COMPOUND EVENTS. Judo Math Inc.

COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)

### 1st Grade Math. Please complete the activity below for the day indicated. Day 1: Double Trouble. Day 2: Greatest Sum. Day 3: Make a Number

1st Grade Math Please complete the activity below for the day indicated. Day 1: Double Trouble Day 2: Greatest Sum Day 3: Make a Number Day 4: Math Fact Road Day 5: Toy Store Double Trouble Paper 1 Die

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Probability of Independent and Dependent Events

706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

### MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

### 10-4 Theoretical Probability

Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning

### Key Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events

15-4 Compound Probability TEKS FOCUS TEKS (1)(E) Apply independence in contextual problems. TEKS (1)(B) Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy,

### Essential Question How can you list the possible outcomes in the sample space of an experiment?

. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment

### Use this information to answer the following questions.

1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### Section 7.1 Experiments, Sample Spaces, and Events

Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.

### Unit 11 Probability. Round 1 Round 2 Round 3 Round 4

Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.

### Section 7.3 and 7.4 Probability of Independent Events

Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and

### PRE TEST. Math in a Cultural Context*

P grade PRE TEST Salmon Fishing: Investigations into A 6P th module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: Grade: Teacher: School: Location of School: Date: *This

### Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?

Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number

### Practice Ace Problems

Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according

### 6) A) both; happy B) neither; not happy C) one; happy D) one; not happy

MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural

### Chance and Probability

F Student Book Name Series F Contents Topic Chance and probability (pp. 0) ordering events relating fractions to likelihood chance experiments fair or unfair the mathletics cup create greedy pig solve

### Lesson 1: Chance Experiments

Student Outcomes Students understand that a probability is a number between and that represents the likelihood that an event will occur. Students interpret a probability as the proportion of the time that

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### Chapter 13 Test Review

1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find

### NAME DATE PERIOD. Study Guide and Intervention

9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.

### MEP Practice Book SA5

5 Probability 5.1 Probabilities MEP Practice Book SA5 1. Describe the probability of the following events happening, using the terms Certain Very likely Possible Very unlikely Impossible (d) (e) (f) (g)

### Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### Section A Calculating Probabilities & Listing Outcomes Grade F D

Name: Teacher Assessment Section A Calculating Probabilities & Listing Outcomes Grade F D 1. A fair ordinary six-sided dice is thrown once. The boxes show some of the possible outcomes. Draw a line from

### Compound Events: Making an Organized List

136 8 7.SP.6 7.SP.8a 7.SP.8b Objective Common Core State Standards Compound Events: Making an Organized List Experience with experiments helps students build on their intuitive sense about probability.

### Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### SERIES Chance and Probability

F Teacher Student Book Name Series F Contents Topic Section Chance Answers and (pp. Probability 0) (pp. 0) ordering chance and events probability_ / / relating fractions to likelihood / / chance experiments

Name lass/grade ate enchmark: M.7.P.7. enchmark: M.7.P.7. William tossed a coin four times while waiting for his bus at the bus stop. The first time it landed on heads. The second time it landed on tails.

### Objectives. Determine whether events are independent or dependent. Find the probability of independent and dependent events.

Objectives Determine whether events are independent or dependent. Find the probability of independent and dependent events. independent events dependent events conditional probability Vocabulary Events

### Lesson 17.1 Assignment

Lesson 17.1 Assignment Name Date Is It Better to Guess? Using Models for Probability Charlie got a new board game. 1. The game came with the spinner shown. 6 7 9 2 3 4 a. List the sample space for using

### 2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2

Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate

### FAVORITE MEALS NUMBER OF PEOPLE Hamburger and French fries 17 Spaghetti 8 Chili 12 Vegetarian delight 3

Probability 1. Destiny surveyed customers in a restaurant to find out their favorite meal. The results of the survey are shown in the table. One person in the restaurant will be picked at random. Based

### Chapter 10 Practice Test Probability

Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its

### A 20% B 25% C 50% D 80% 2. Which spinner has a greater likelihood of landing on 5 rather than 3?

1. At a middle school, 1 of the students have a cell phone. If a student is chosen at 5 random, what is the probability the student does not have a cell phone? A 20% B 25% C 50% D 80% 2. Which spinner

### Probability 1. Name: Total Marks: 1. An unbiased spinner is shown below.

Probability 1 A collection of 9-1 Maths GCSE Sample and Specimen questions from AQA, OCR and Pearson-Edexcel. Name: Total Marks: 1. An unbiased spinner is shown below. (a) Write a number to make each sentence

### Adriana tosses a number cube with faces numbered 1 through 6 and spins the spinner shown below at the same time.

Domain 5 Lesson 9 Compound Events Common Core Standards: 7.SP.8.a, 7.SP.8.b, 7.SP.8.c Getting the Idea A compound event is a combination of two or more events. Compound events can be dependent or independent.

### e. Are the probabilities you found in parts (a)-(f) experimental probabilities or theoretical probabilities? Explain.

1. Josh is playing golf. He has 3 white golf balls, 4 yellow golf balls, and 1 red golf ball in his golf bag. At the first hole, he randomly draws a ball from his bag. a. What is the probability he draws

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability

### Algebra 1B notes and problems May 14, 2009 Independent events page 1

May 14, 009 Independent events page 1 Independent events In the last lesson we were finding the probability that a 1st event happens and a nd event happens by multiplying two probabilities For all the

### Practice 9-1. Probability

Practice 9-1 Probability You spin a spinner numbered 1 through 10. Each outcome is equally likely. Find the probabilities below as a fraction, decimal, and percent. 1. P(9) 2. P(even) 3. P(number 4. P(multiple

### TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

### Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

### PRE TEST KEY. Math in a Cultural Context*

PRE TEST KEY Salmon Fishing: Investigations into A 6 th grade module in the Math in a Cultural Context* UNIVERSITY OF ALASKA FAIRBANKS Student Name: PRE TEST KEY Grade: Teacher: School: Location of School:

### Probability Interactives from Spire Maths A Spire Maths Activity

Probability Interactives from Spire Maths A Spire Maths Activity https://spiremaths.co.uk/ia/ There are 12 sets of Probability Interactives: each contains a main and plenary flash file. Titles are shown

### Section Theoretical and Experimental Probability...Wks 3

Name: Class: Date: Section 6.8......Theoretical and Experimental Probability...Wks 3. Eight balls numbered from to 8 are placed in a basket. One ball is selected at random. Find the probability that it

### Mathacle. Name: Date:

Quiz Probability 1.) A telemarketer knows from past experience that when she makes a call, the probability that someone will answer the phone is 0.20. What is probability that the next two phone calls

### MAT 17: Introduction to Mathematics Final Exam Review Packet. B. Use the following definitions to write the indicated set for each exercise below:

MAT 17: Introduction to Mathematics Final Exam Review Packet A. Using set notation, rewrite each set definition below as the specific collection of elements described enclosed in braces. Use the following

### , x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)

1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game

### UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet

Name Period Date UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet 20.1 Solving Proportions 1 Add, subtract, multiply, and divide rational numbers. Use rates and proportions to solve problems.

### Applications of Independent Events

pplications of Independent Events Focus on fter this lesson, you will be able to φ use tree diagrams, tables, and other graphic organizers to solve probability problems In the game of Sit and Save, you

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### Probability and the Monty Hall Problem Rong Huang January 10, 2016

Probability and the Monty Hall Problem Rong Huang January 10, 2016 Warm-up: There is a sequence of number: 1, 2, 4, 8, 16, 32, 64, How does this sequence work? How do you get the next number from the previous

### Probability Essential Math 12 Mr. Morin

Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected

### Relative Frequency GCSE MATHEMATICS. These questions have been taken or modified from previous AQA GCSE Mathematics Papers.

GCSE MATHEMATICS Relative Frequency These questions have been taken or modified from previous AQA GCSE Mathematics Papers. Instructions Use black ink or black ball-point pen. Draw diagrams in pencil. Answer

### MEP Practice Book ES5. 1. A coin is tossed, and a die is thrown. List all the possible outcomes.

5 Probability MEP Practice Book ES5 5. Outcome of Two Events 1. A coin is tossed, and a die is thrown. List all the possible outcomes. 2. A die is thrown twice. Copy the diagram below which shows all the

### Probability of Compound Events

Lesson 33A Probability of Compound Events Name: Prerequisite: Describe Sample Space Study the example showing how to describe the sample space for an experiment. Then solve problems 1 8. Example Marcus

### Name Date. Sample Spaces and Probability For use with Exploration 12.1

. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of

### Probability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible

Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen

### Lesson 16.1 Assignment

Lesson 16.1 Assignment Name Date Rolling, Rolling, Rolling... Defining and Representing Probability 1. Rasheed is getting dressed in the dark. He reaches into his sock drawer to get a pair of socks. He

### Chance and Probability

Series Student Chance and Probability My name F Copyright 009 P Learning. All rights reserved. First edition printed 009 in Australia. A catalogue record for this book is available from P Learning Ltd.

### * How many total outcomes are there if you are rolling two dice? (this is assuming that the dice are different, i.e. 1, 6 isn t the same as a 6, 1)

Compound probability and predictions Objective: Student will learn counting techniques * Go over HW -Review counting tree -All possible outcomes is called a sample space Go through Problem on P. 12, #2

### Functional Skills Mathematics

Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page - Combined Events D/L. Page - 9 West Nottinghamshire College D/L. Information Independent Events

### 1. Theoretical probability is what should happen (based on math), while probability is what actually happens.

Name: Date: / / QUIZ DAY! Fill-in-the-Blanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental

### Elementary Statistics. Basic Probability & Odds

Basic Probability & Odds What is a Probability? Probability is a branch of mathematics that deals with calculating the likelihood of a given event to happen or not, which is expressed as a number between

### 2. Complete the congruence statements based on the corresponding sides of the congruent triangles.

Name Practice Quiz (6.4 6.8 & 11.9) 1. Name the corresponding sides and the corresponding angles. D DF D F 2. omplete the congruence statements based on the corresponding sides of the congruent triangles.

### Unit 7 Central Tendency and Probability

Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at

### 10-8 Probability of Compound Events

Use any method to find the total number of outcomes in each situation. 6. Nathan has 4 t-shirts, 4 pairs of shorts, and 2 pairs of flip-flops. Use the Fundamental Counting Principle to find the number

### Page 1 of 22. Website: Mobile:

Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

### 3. Three colors of cars that are I n red, blue and white color is driven sim ultaneously. Draw a tree diagram to represent the possible outcom es.

Topic : Tree Diagram s- Worksheet 1 1. A dice num bered 1 to 4 is rolled and 1 coins tossed. Draw a tree diagram to represent the possible 2. Draw a tree diagram to represent total outcom es for flipping

### Georgia Department of Education Georgia Standards of Excellence Framework GSE Geometry Unit 6

How Odd? Standards Addressed in this Task MGSE9-12.S.CP.1 Describe categories of events as subsets of a sample space using unions, intersections, or complements of other events (or, and, not). MGSE9-12.S.CP.7

### Lesson 15.5: Independent and Dependent Events

Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the

### Review. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers

FOUNDATIONS Outline Sec. 3-1 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into

### CPM Educational Program

CC COURSE 2 ETOOLS Table of Contents General etools... 5 Algebra Tiles (CPM)... 6 Pattern Tile & Dot Tool (CPM)... 9 Area and Perimeter (CPM)...11 Base Ten Blocks (CPM)...14 +/- Tiles & Number Lines (CPM)...16

### Common Core Math Tutorial and Practice

Common Core Math Tutorial and Practice TABLE OF CONTENTS Chapter One Number and Numerical Operations Number Sense...4 Ratios, Proportions, and Percents...12 Comparing and Ordering...19 Equivalent Numbers,

### Tanning: Week 13 C. D.

Tanning: Week 13 Name: 1. Richard is conducting an experiment. Every time he flips a fair two-sided coin, he also rolls a six-sided die. What is the probability that the coin will land on tails and the

### MATH STUDENT BOOK. 6th Grade Unit 7

MATH STUDENT BOOK 6th Grade Unit 7 Unit 7 Probability and Geometry MATH 607 Probability and Geometry. PROBABILITY 5 INTRODUCTION TO PROBABILITY 6 COMPLEMENTARY EVENTS SAMPLE SPACE 7 PROJECT: THEORETICAL

### Statistics and Probability

Lesson Statistics and Probability Name Use Centimeter Cubes to represent votes from a subgroup of a larger population. In the sample shown, the red cubes are modeled by the dark cubes and represent a yes

### Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability

Unit 6: What Do You Expect? Investigation 2: Experimental and Theoretical Probability Lesson Practice Problems Lesson 1: Predicting to Win (Finding Theoretical Probabilities) 1-3 Lesson 2: Choosing Marbles

### Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain

PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0

### What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?

Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and

### Junior Circle Meeting 5 Probability. May 2, ii. In an actual experiment, can one get a different number of heads when flipping a coin 100 times?

Junior Circle Meeting 5 Probability May 2, 2010 1. We have a standard coin with one side that we call heads (H) and one side that we call tails (T). a. Let s say that we flip this coin 100 times. i. How

### FALL 2012 MATH 1324 REVIEW EXAM 4

FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die

### \\\v?i. EXERCISES Activity a. Determine the complement of event A in the roll-a-die experiment.

ACTIVITY 6.2 CHOICES 719 11. a. Determine the complement of event A in the roll-a-die experiment. b. Describe what portion of the Venn diagram above represents the complement of A. SUMMARY Activity 6.2

### green, green, green, green, green The favorable outcomes of the event are blue and red.

5 Chapter Review Review Key Vocabulary experiment, p. 6 outcomes, p. 6 event, p. 6 favorable outcomes, p. 6 probability, p. 60 relative frequency, p. 6 Review Examples and Exercises experimental probability,

### Worksheets for GCSE Mathematics. Probability. mr-mathematics.com Maths Resources for Teachers. Handling Data

Worksheets for GCSE Mathematics Probability mr-mathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales