IB HL Mathematics Homework 2014

Size: px
Start display at page:

Download "IB HL Mathematics Homework 2014"

Transcription

1 IB HL Mathematics Homework Counting, Binomial Theorem Solutions 1) How many permutations are there of the letters MATHEMATICS? Using the permutation formula, we get 11!/(2!2!2!), since there are 2 M's, 2 A's and 2 T's in the word. How many of these permutations begin and end with the letter A? Fixing an A in both the beginning and end location, we have 9 other letters to freely permute. This can be done in 9!/(2!2!) ways, accounting for the 2 M's and 2 T's. How many of these arrangements do NOT have two vowels adjacent to one another? There are two ways to interpret the last question we could count all of the permutations of MATHEMATICS with no adjacent vowels, OR, the just the ones that start and end with A that have no adjacent values. Here are solutions to both: From all permutations: There are 7 consonants and 4 vowels. Place the consonants like so: C C C C C C C The consonants can be placed in those 7 locations in 7!/(2!2!) ways. Now, consider placing the vowels in the underlined gaps( ). The two A's can be placed in 8C 2 locations, since we will choose 2 out of the 8 locations for the As. Then the E can be placed in any of the 6 remaining locations and the I can be placed in any of the 5 remaining locations. 7! 8 Using the multiplication principle, we get the answer to be (6)(5) !2! 2 From permutations that start and end with A: There are 7 consonants and 2 vowels left to place. Place the consonants like so: A C C C C C C C A Once again, the consonants canb e placed in those 7 locations in 7!/(2!2!) ways.

2 The E can be placed in 6 places while the I can be placed in the remaining 5 places. The logic here is exactly the same as above, but there is exactly one location for the pair of As. So, the final answer here is /28 = ) A bridge team of four is chosen from six married couples to represent a club at a match. If a husband and wife cannot both be on the team, in how many ways can the team be formed? There are 12 choices for the first person, followed by 10 for the second (since the first person's spouse is not allowed), followed by 8 for the third and 6 for the fourth. But, we have counted all 4! orders of selecting teams, so we must divide the product 12x10x8x6 by 4! to get our final answer of 12(10)(8)(6)/4! = 240. Another way to solve this problem is as follows. Choose four of the six couples from which to select the team. This can be done in 6 C 4 ways. Once we've selected the couples, we have 2 choices for each player from a couple. Thus, there are 2 4 ways to choose the team, once the four couples are designated. Thus, the total number of teams is ( 6 C 4 )2 4 = ) Jeff is in the portable labyrinth. Luckily, the portables are set up in a grid system. Jeff is currently at grid square (0,0) while his long lost love (Angela, the TOK intern from last semester) is at grid square (8,10). Jeff obviously wants to get to his long lost love as soon as possible, so he will only move in the positive x direction and positive y direction. However, Jeff has neglected to do his Calc BC homework and rumor has it that Worcester will put the beat down on him if he sees Jeff. Worcester s portable is located at grid location (3, 7). So, Jeff would like to avoid crossing through that particular location so that he doesn t have a black eye when he finally gets to his long lost love. How many ways can Jeff get to his long lost love without a black eye? 8 10 The total number of ways in which Jeff can get to Angela is, utilizing the example 8 shown in class that proves that this problem is about choosing 8 of the 18 possible "grid choices" to move in the positive x direction. Now, we will calculate how many of these paths cross Worcester. There are paths 5 3 from the current square to Worcester, and there are paths from Worcester to Angela. 5 We can combine any of the first paths with any of the second paths to create a path from Jeff's original location to Angela via Worcester. Thus, the product of these two: is 3 5 the desired number of paths. To get the final answer, we much subtract this from the total: = 37,

3 4) a) How many four digit numbers do NOT contain any repeating digits? (Note: All four digits numbers are in between 1000 and 9999, inclusive.) There are 9 choices for the first digi (can't choose 0)t, followed by 9 choices for the second digit (can't choose the first digit), followed by 8 choices for the third digit and 7 choices for the last digit to yield 9x9x8x7 = 4635 such four digit numbers. b) A number is defined as ascending if each of its digits are in increasing numerical order. For example, 256 and 1278 are ascending numbers, but 1344 and 2687 are not. How many four digit numbers are ascending? For each combination of four digits out of nine, there is EXACTLY one corresponding 9 ascending number. Thus, the total number of ascending numbers is, the number of ways 4 to choose 4 digits out of 9 (1 through 9). c) A number is defined as descending if each of its digits are in decreasing numerical order. For example, 652 and 8721 are descending numbers, but 4431 and 7862 are not. How many four digit numbers are descending? For each combination of four digits out of ten (0 is now allowed), there is EXACTLY one 10 corresponding descending number. Thus, the total number of descending numbers is, 4 the number of ways to choose 4 digits out of 10 (0 through 9). 5) Find the term independent of x in the binomial expansion of x. 9 x An arbitrary term in the expansion is 9k k 1 9k 9 9 k 1 3k9 ( x k 2 ) ( ) 9x ( ) k 2 9 x. The value of k that produces the constant term is k=3. We obtain that by setting the exponent to x, 3k-9, to 0. Now, we can obtain the constant term in the expansion: ( ) x8x7 9 x x

4 6) Find the coefficient of x 7 in the expansion of (2 + 3x) 10, giving your answer as a whole number. 10 This term is (2) 7 3 (3x) 7 7 (120)(8)(2187) x, so the desired coefficient is ) Given that (1+x) 5 (1 + ax) 6 = 1 + bx + 10x 2 + +a 6 x 11, find the values of a and b. The x term of the expansion is 5x +6 ax = (5+6a)x, which we know is equal to bx. Thus, b = 5+6a. The x 2 coefficient of the expansion is a a, which is also Setting this to 10, we can solve for a: a 2 a a 2 30a a ( a 2) 0, so a=0 or a=-2. Thus, we have two ordered pairs of solutions (a,b): (0,5) and (-2, -7). 8) Find the number of ways in which twelve children can be divided into two groups of six if two particular boys must be in different groups. Place the two boys in two separate groups, A and B. We are then free to select any five of the 10 children for group A. This can be done in ways. Once this selection is made, the other 5 10 group is fixed. Thus, there are ways in which the two groups can be subdivided. 5

5 9) Students A, B, C, D, E, F, G, H, I, and J must sit in ten chairs lined up in a row. Answer the following questions based on the restrictions given below. (Note that each part is independent of the others, thus no restriction given in part a applies to the rest of the parts, etc.) a) How many ways can the students sit if the two students on the ends of the row have to be vowel-named students? There are three choices for the student on the left, and then 2 choices for the student on the right. Following those two choices, we can arrange the rest of the 8 students left in 8! ways. Thus, the total number of ways the students can sit is (3)(2)(8!). b) How many ways can the students sit if no two students with vowel names can sit adjacent to each other? Place all seven consonants like so (C designates an arbitrary consonant): C C C C C C C Now, the empty slots ( ) represent possible locations for the vowels. There are P(8,3) = (8)(7)(6) ways to place the vowels. The 7 consonants can be ordered in 7! ways. Thus, there are (8)(7)(6)(7!) ways the students can sit without any vowel-named students sitting next to each other. c) you can skip this exercise!!! Given that students A, B, C, and D are male, and that the rest of the students are female, how many ways can the students be arranged such that the average number of females adjacent to each male is 0.25? (Note: to determine the average number of females each male is adjacent to, sum up the total number of females adjacent to each male and then divide by the total number of males. For example, in the arrangement AEBFCDGHIJ, each male is adjacent to 1.25 females, on average.) Notice that the only ways in which the average number of females adjacent to males is 0.25 is when all four males are at the left or right end of the row of chairs. If this isn't the case, then more than one female will be adjacent to a male. If this occurs, then the average will be at least 0.5. Since the males and female can sit in any arrangement amongst themselves, for both cases, they can sit in (4!)(6!) ways. Totaling both possibilities (males to the left, males to the right), the total number of arrangements desired is (2)(4!)(6!).

6 10) you can skip this exercise!!! There are 7 types of candy sold at Walmart. You are asked to buy 20 bags of candy at Walmart with the following restrictions: you have to get at least three bags of Reece's pieces, you can not get more than four bags of Snickers, and you must get in between three and five bags of Hershey's Kisses, inclusive. How many combinations of bags of candy can you buy? Go ahead and buy the three bags of Reece's so now, you have 17 bags of candy to buy. Split the counting into three groups: 1) 3 bags of Hershey's Kisses 2) 4 bags of Hershey's Kisses 3) 5 bags of Hershey's Kisses For #1, we now have 14 bags left to buy out of six types of candy (since no more Hershey's Kisses are allowed), which can be done in ways. But, of these, we don't want to 6 1 count the ones that have 5 or more bags of Snickers. Let's count the number of ways to buy 14 bags of six types of candy with 5 or more being Snickers. Go ahead and buy the five Snickers bags, leaving 9 more to buy. This can be done in, thus, the total number of combinations in group 1 is. 5 5 For #2, repeat all the logic above, but we start with only thirteen bags left to buy, leading to an answer of. 5 5 Finally for #3, repeating the logic again, but with only twelve bags left to buy, we get an answer of Adding, we get our final answer to be BONUS: Mr. Blue, Mr. Black, Mr. Green, Mrs. White, Mrs. Yellow and Mrs. Red sit around a circular table for a meeting. Mr. Black and Mrs. White must not sit together. Calculate the number of different ways these six people can sit at the table without Mr. Black and Mrs. White sitting together. Fix Mr. Black's position. Mrs. White can then sit in three locations, (since she can't sit in Mr. Black's seat, or the two adjacent to him). Then Mr. Blue can pick one of four seats, Mr. Green can pick one of three, Mrs. White can pick one of two, and finally Mrs. Yellow is fixed. Thus, there are a total of 3x4x3x2x1 = 72 ways in which they can sit.

Mat 344F challenge set #2 Solutions

Mat 344F challenge set #2 Solutions Mat 344F challenge set #2 Solutions. Put two balls into box, one ball into box 2 and three balls into box 3. The remaining 4 balls can now be distributed in any way among the three remaining boxes. This

More information

About Permutations and Combinations: Examples

About Permutations and Combinations: Examples About Permutations and Combinations: Examples TABLE OF CONTENTS Basics... 1 Product Rule...1-2 Sum Rule...2 Permutations... 2-3 Combinations... 3-4 Pascal s Triangle... 4 Binomial Theorem.. 4 Pascal s

More information

JUST THE MATHS UNIT NUMBER PROBABILITY 2 (Permutations and combinations) A.J.Hobson

JUST THE MATHS UNIT NUMBER PROBABILITY 2 (Permutations and combinations) A.J.Hobson JUST THE MATHS UNIT NUMBER 19.2 PROBABILITY 2 (Permutations and combinations) by A.J.Hobson 19.2.1 Introduction 19.2.2 Rules of permutations and combinations 19.2.3 Permutations of sets with some objects

More information

MATH 351 Fall 2009 Homework 1 Due: Wednesday, September 30

MATH 351 Fall 2009 Homework 1 Due: Wednesday, September 30 MATH 51 Fall 2009 Homework 1 Due: Wednesday, September 0 Problem 1. How many different letter arrangements can be made from the letters BOOKKEEPER. This is analogous to one of the problems presented in

More information

Unit 5 Radical Functions & Combinatorics

Unit 5 Radical Functions & Combinatorics 1 Unit 5 Radical Functions & Combinatorics General Outcome: Develop algebraic and graphical reasoning through the study of relations. Develop algebraic and numeric reasoning that involves combinatorics.

More information

11.3B Warmup. 1. Expand: 2x. 2. Express the expansion of 2x. using combinations. 3. Simplify: a 2b a 2b

11.3B Warmup. 1. Expand: 2x. 2. Express the expansion of 2x. using combinations. 3. Simplify: a 2b a 2b 11.3 Warmup 1. Expand: 2x y 4 2. Express the expansion of 2x y 4 using combinations. 3 3 3. Simplify: a 2b a 2b 4. How many terms are there in the expansion of 2x y 15? 5. What would the 10 th term in

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS PERMUTATIONS AND COMBINATIONS 1. Fundamental Counting Principle Assignment: Workbook: pg. 375 378 #1-14 2. Permutations and Factorial Notation Assignment: Workbook pg. 382-384 #1-13, pg. 526 of text #22

More information

Counting Principles Review

Counting Principles Review Counting Principles Review 1. A magazine poll sampling 100 people gives that following results: 17 read magazine A 18 read magazine B 14 read magazine C 8 read magazines A and B 7 read magazines A and

More information

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology

MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally

More information

Combinations. Permutations. Counting. Counting. Combinations. Permutations. September 19, J. Boulton MDM 4U1

Combinations. Permutations. Counting. Counting. Combinations. Permutations. September 19, J. Boulton MDM 4U1 Counting Permutations It is expensive and far from logical to proceed through scientific discovery by chance. Imagine for human health purposes, you need to test and experiment with all possible bi-products

More information

Algebra II- Chapter 12- Test Review

Algebra II- Chapter 12- Test Review Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.

More information

Topics to be covered

Topics to be covered Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

More information

Exercises Exercises. 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}?

Exercises Exercises. 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}? Exercises Exercises 1. List all the permutations of {a, b, c}. 2. How many different permutations are there of the set {a, b, c, d, e, f, g}? 3. How many permutations of {a, b, c, d, e, f, g} end with

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS 8 PERMUTATIONS AND COMBINATIONS FUNDAMENTAL PRINCIPLE OF COUNTING Multiplication Principle : If an operation can be performed in 'm' different ways; following which a second operation can be performed

More information

Solutions to Exercises on Page 86

Solutions to Exercises on Page 86 Solutions to Exercises on Page 86 #. A number is a multiple of, 4, 5 and 6 if and only if it is a multiple of the greatest common multiple of, 4, 5 and 6. The greatest common multiple of, 4, 5 and 6 is

More information

CONTENTS CONTENTS PAGES 11.0 CONCEPT MAP A. PERMUTATIONS a EXERCISE A B. COMBINATIONS a EXERCISE B PAST YEAR SPM

CONTENTS CONTENTS PAGES 11.0 CONCEPT MAP A. PERMUTATIONS a EXERCISE A B. COMBINATIONS a EXERCISE B PAST YEAR SPM PROGRAM DIDIK CEMERLANG AKADEMIK SPM ADDITIONAL MATHEMATICS FORM 5 MODULE 11 PERMUTATIONS AND COMBINATIONS 0 CONTENTS CONTENTS PAGES 11.0 CONCEPT MAP 2 11.1 A. PERMUTATIONS 3 11.1a EXERCISE A.1 3 11.2

More information

Unit on Permutations and Combinations (Counting Techniques)

Unit on Permutations and Combinations (Counting Techniques) Page 1 of 15 (Edit by Y.M. LIU) Page 2 of 15 (Edit by Y.M. LIU) Unit on Permutations and Combinations (Counting Techniques) e.g. How many different license plates can be made that consist of three digits

More information

Unit 5 Radical Functions & Combinatorics

Unit 5 Radical Functions & Combinatorics 1 Graph of y Unit 5 Radical Functions & Combinatorics x: Characteristics: Ex) Use your knowledge of the graph of y x and transformations to sketch the graph of each of the following. a) y x 5 3 b) f (

More information

MAT3707. Tutorial letter 202/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/202/1/2017

MAT3707. Tutorial letter 202/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/202/1/2017 MAT3707/0//07 Tutorial letter 0//07 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Semester Department of Mathematical Sciences SOLUTIONS TO ASSIGNMENT 0 BARCODE Define tomorrow university of south africa

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions)

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) CSE 31: Foundations of Computing II Quiz Section #: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n

More information

CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min)

CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min) CS1802 Discrete Structures Recitation Fall 2018 September 25-26, 2018 CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min) Permutations and Combinations i. Evaluate the following expressions. 1. P(10, 4)

More information

6.1.1 The multiplication rule

6.1.1 The multiplication rule 6.1.1 The multiplication rule 1. There are 3 routes joining village A and village B and 4 routes joining village B and village C. Find the number of different ways of traveling from village A to village

More information

Created by T. Madas COMBINATORICS. Created by T. Madas

Created by T. Madas COMBINATORICS. Created by T. Madas COMBINATORICS COMBINATIONS Question 1 (**) The Oakwood Jogging Club consists of 7 men and 6 women who go for a 5 mile run every Thursday. It is decided that a team of 8 runners would be picked at random

More information

Introductory Probability

Introductory Probability Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

More information

Permutations and Combinations Section

Permutations and Combinations Section A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Permutations and Combinations Section 13.3-13.4 Dr. John Ehrke Department of Mathematics Fall 2012 Permutations A permutation

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

Review I. October 14, 2008

Review I. October 14, 2008 Review I October 14, 008 If you put n + 1 pigeons in n pigeonholes then at least one hole would have more than one pigeon. If n(r 1 + 1 objects are put into n boxes, then at least one of the boxes contains

More information

The Product Rule can be viewed as counting the number of elements in the Cartesian product of the finite sets

The Product Rule can be viewed as counting the number of elements in the Cartesian product of the finite sets Chapter 6 - Counting 6.1 - The Basics of Counting Theorem 1 (The Product Rule). If every task in a set of k tasks must be done, where the first task can be done in n 1 ways, the second in n 2 ways, and

More information

Name: Spring P. Walston/A. Moore. Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams FCP

Name: Spring P. Walston/A. Moore. Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams FCP Name: Spring 2016 P. Walston/A. Moore Topic worksheet # assigned #completed Teacher s Signature Tree Diagrams 1-0 13 FCP 1-1 16 Combinations/ Permutations Factorials 1-2 22 1-3 20 Intro to Probability

More information

HOMEWORK ASSIGNMENT 5

HOMEWORK ASSIGNMENT 5 HOMEWORK ASSIGNMENT 5 MATH 251, WILLIAMS COLLEGE, FALL 2006 Abstract. These are the instructor s solutions. 1. Big Brother The social security number of a person is a sequence of nine digits that are not

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

Section The Multiplication Principle and Permutations

Section The Multiplication Principle and Permutations Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

More information

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together?

LEVEL I. 3. In how many ways 4 identical white balls and 6 identical black balls be arranged in a row so that no two white balls are together? LEVEL I 1. Three numbers are chosen from 1,, 3..., n. In how many ways can the numbers be chosen such that either maximum of these numbers is s or minimum of these numbers is r (r < s)?. Six candidates

More information

Combinatorics. PIE and Binomial Coefficients. Misha Lavrov. ARML Practice 10/20/2013

Combinatorics. PIE and Binomial Coefficients. Misha Lavrov. ARML Practice 10/20/2013 Combinatorics PIE and Binomial Coefficients Misha Lavrov ARML Practice 10/20/2013 Warm-up Po-Shen Loh, 2013. If the letters of the word DOCUMENT are randomly rearranged, what is the probability that all

More information

aabb abab abba baab baba bbaa permutations of these. But, there is a lot of duplicity in this list, each distinct word (such as 6! 3!2!1!

aabb abab abba baab baba bbaa permutations of these. But, there is a lot of duplicity in this list, each distinct word (such as 6! 3!2!1! Introduction to COMBINATORICS In how many ways (permutations) can we arrange n distinct objects in a row?answer: n (n ) (n )... def. = n! EXAMPLE (permuting objects): What is the number of different permutations

More information

DISCRETE STRUCTURES COUNTING

DISCRETE STRUCTURES COUNTING DISCRETE STRUCTURES COUNTING LECTURE2 The Pigeonhole Principle The generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least N/k of the

More information

Sec. 4.2: Introducing Permutations and Factorial notation

Sec. 4.2: Introducing Permutations and Factorial notation Sec. 4.2: Introducing Permutations and Factorial notation Permutations: The # of ways distinguishable objects can be arranged, where the order of the objects is important! **An arrangement of objects in

More information

Chapter 2 Math

Chapter 2 Math Chapter 2 Math 3201 1 Chapter 2: Counting Methods: Solving problems that involve the Fundamental Counting Principle Understanding and simplifying expressions involving factorial notation Solving problems

More information

Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states:

Introduction. Firstly however we must look at the Fundamental Principle of Counting (sometimes referred to as the multiplication rule) which states: Worksheet 4.11 Counting Section 1 Introduction When looking at situations involving counting it is often not practical to count things individually. Instead techniques have been developed to help us count

More information

Math 365 Wednesday 2/20/19 Section 6.1: Basic counting

Math 365 Wednesday 2/20/19 Section 6.1: Basic counting Math 365 Wednesday 2/20/19 Section 6.1: Basic counting Exercise 19. For each of the following, use some combination of the sum and product rules to find your answer. Give an un-simplified numerical answer

More information

Counting Things Solutions

Counting Things Solutions Counting Things Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 7, 006 Abstract These are solutions to the Miscellaneous Problems in the Counting Things article at:

More information

Chapter 2. Permutations and Combinations

Chapter 2. Permutations and Combinations 2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find

More information

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6 CS100: DISCRETE STRUCTURES Lecture 8 Counting - CH6 Lecture Overview 2 6.1 The Basics of Counting: THE PRODUCT RULE THE SUM RULE THE SUBTRACTION RULE THE DIVISION RULE 6.2 The Pigeonhole Principle. 6.3

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Chapter 10A. a) How many labels for Product A are required? Solution: ABC ACB BCA BAC CAB CBA. There are 6 different possible labels.

Chapter 10A. a) How many labels for Product A are required? Solution: ABC ACB BCA BAC CAB CBA. There are 6 different possible labels. Chapter 10A The Addition rule: If there are n ways of performing operation A and m ways of performing operation B, then there are n + m ways of performing A or B. Note: In this case or means to add. Eg.

More information

COMBINATORIAL PROBABILITY

COMBINATORIAL PROBABILITY COMBINATORIAL PROBABILITY Question 1 (**+) The Oakwood Jogging Club consists of 7 men and 6 women who go for a 5 mile run every Thursday. It is decided that a team of 8 runners would be picked at random

More information

Lesson1.notebook July 07, 2013

Lesson1.notebook July 07, 2013 Lesson1.notebook July 07, 2013 Topic: Counting Principles Today's Learning goal: I can use tree diagrams, Fundamental counting principle and indirect methods to determine the number of outcomes. Tree Diagram

More information

Simple Counting Problems

Simple Counting Problems Appendix F Counting Principles F1 Appendix F Counting Principles What You Should Learn 1 Count the number of ways an event can occur. 2 Determine the number of ways two or three events can occur using

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 22 Fall 2017 Homework 2 Drew Armstrong Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Section 1.2, Exercises 5, 7, 13, 16. Section 1.3, Exercises,

More information

(1). We have n different elements, and we would like to arrange r of these elements with no repetition, where 1 r n.

(1). We have n different elements, and we would like to arrange r of these elements with no repetition, where 1 r n. BASIC KNOWLEDGE 1. Two Important Terms (1.1). Permutations A permutation is an arrangement or a listing of objects in which the order is important. For example, if we have three numbers 1, 5, 9, there

More information

With Question/Answer Animations. Chapter 6

With Question/Answer Animations. Chapter 6 With Question/Answer Animations Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and

More information

50 Counting Questions

50 Counting Questions 50 Counting Questions Prob-Stats (Math 3350) Fall 2012 Formulas and Notation Permutations: P (n, k) = n!, the number of ordered ways to permute n objects into (n k)! k bins. Combinations: ( ) n k = n!,

More information

Math 475, Problem Set #3: Solutions

Math 475, Problem Set #3: Solutions Math 475, Problem Set #3: Solutions A. Section 3.6, problem 1. Also: How many of the four-digit numbers being considered satisfy (a) but not (b)? How many satisfy (b) but not (a)? How many satisfy neither

More information

6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?

6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices? Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different

More information

Bayes stuff Red Cross and Blood Example

Bayes stuff Red Cross and Blood Example Bayes stuff Red Cross and Blood Example 42% of the workers at Motor Works are female, while 67% of the workers at City Bank are female. If one of these companies is selected at random (assume a 50-50 chance

More information

Staircase Rook Polynomials and Cayley s Game of Mousetrap

Staircase Rook Polynomials and Cayley s Game of Mousetrap Staircase Rook Polynomials and Cayley s Game of Mousetrap Michael Z. Spivey Department of Mathematics and Computer Science University of Puget Sound Tacoma, Washington 98416-1043 USA mspivey@ups.edu Phone:

More information

1. For which of the following sets does the mean equal the median?

1. For which of the following sets does the mean equal the median? 1. For which of the following sets does the mean equal the median? I. {1, 2, 3, 4, 5} II. {3, 9, 6, 15, 12} III. {13, 7, 1, 11, 9, 19} A. I only B. I and II C. I and III D. I, II, and III E. None of the

More information

Counting. Chapter 6. With Question/Answer Animations

Counting. Chapter 6. With Question/Answer Animations . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Counting Chapter

More information

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting Discrete Mathematics: Logic Discrete Mathematics: Lecture 15: Counting counting combinatorics: the study of the number of ways to put things together into various combinations basic counting principles

More information

University of Connecticut Department of Mathematics

University of Connecticut Department of Mathematics University of Connecticut Department of Mathematics Math 070Q Exam A Fall 07 Name: TA Name: Discussion: Read This First! This is a closed notes, closed book exam. You cannot receive aid on this exam from

More information

Use the given information to write the first 5 terms of the sequence and the 20 th term. 6. a1= 4, d= 8 7. a1= 10, d= -6 8.

Use the given information to write the first 5 terms of the sequence and the 20 th term. 6. a1= 4, d= 8 7. a1= 10, d= -6 8. Arithmetic Sequences Class Work Find the common difference in sequence, and then write the next 3 terms in the sequence. 1. 3, 7,11, 15, 2. 1, 8, 15, 22, 3. 5, 2, -1, -4, 4. 68, 56, 44, 32, 5. 1.3, 2.6,

More information

10.2.notebook. February 24, A standard deck of 52 playing cards has 4 suits with 13 different cards in each suit.

10.2.notebook. February 24, A standard deck of 52 playing cards has 4 suits with 13 different cards in each suit. Section 10.2 It is not always important to count all of the different orders that a group of objects can be arranged. A combination is a selection of r objects from a group of n objects where the order

More information

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability Review: Main Theorems and Concepts Binomial Theorem: Principle of Inclusion-Exclusion

More information

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap

European Journal of Combinatorics. Staircase rook polynomials and Cayley s game of Mousetrap European Journal of Combinatorics 30 (2009) 532 539 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Staircase rook polynomials

More information

3 The multiplication rule/miscellaneous counting problems

3 The multiplication rule/miscellaneous counting problems Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

More information

Permutations and Combinations Practice Test

Permutations and Combinations Practice Test Name: Class: Date: Permutations and Combinations Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Suppose that license plates in the fictional

More information

Counting Things. Tom Davis March 17, 2006

Counting Things. Tom Davis   March 17, 2006 Counting Things Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 17, 2006 Abstract We present here various strategies for counting things. Usually, the things are patterns, or

More information

CS 237 Fall 2018, Homework SOLUTION

CS 237 Fall 2018, Homework SOLUTION 0//08 hw03.solution.lenka CS 37 Fall 08, Homework 03 -- SOLUTION Due date: PDF file due Thursday September 7th @ :59PM (0% off if up to 4 hours late) in GradeScope General Instructions Please complete

More information

Permutations and Combinations. Combinatorics

Permutations and Combinations. Combinatorics ~ Combinatorics Combinatorics is a branch of mathematics that studies collections of objects that satis@ specified criteria. In particular, it is concerned with "counting" the number of arrangements or

More information

CSE 312: Foundations of Computing II Quiz Section #2: Combinations, Counting Tricks (solutions)

CSE 312: Foundations of Computing II Quiz Section #2: Combinations, Counting Tricks (solutions) CSE 312: Foundations of Computing II Quiz Section #2: Combinations, Counting Tricks (solutions Review: Main Theorems and Concepts Combinations (number of ways to choose k objects out of n distinct objects,

More information

Unit 1. Activity 1. Whole numbers. 1. Copy and complete each number pattern.

Unit 1. Activity 1. Whole numbers. 1. Copy and complete each number pattern. 1 2 Unit 1 Whole numbers Activity 1 1. Copy and complete each number pattern. 2 671 2 680 2 689 13 450 13 650 14 450 25 125 25 000 24 875 124 300 126 300 128 300 180 500 180 000 179 500 2. Write these

More information

Counting principles, including permutations and combinations.

Counting principles, including permutations and combinations. Counting principles, including permutations and combinations. The binomial theorem: expansion of (aa + bb) nn, nn εε NN. 1 THE PRODUCT RULE If there are mm different ways of performing an operation and

More information

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation Section 4.6 Permutations MDM4U Jensen Part 1: Factorial Investigation You are trying to put three children, represented by A, B, and C, in a line for a game. How many different orders are possible? a)

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

JIGSAW ACTIVITY, TASK # Make sure your answer in written in the correct order. Highest powers of x should come first, down to the lowest powers.

JIGSAW ACTIVITY, TASK # Make sure your answer in written in the correct order. Highest powers of x should come first, down to the lowest powers. JIGSAW ACTIVITY, TASK #1 Your job is to multiply and find all the terms in ( 1) Recall that this means ( + 1)( + 1)( + 1)( + 1) Start by multiplying: ( + 1)( + 1) x x x x. x. + 4 x x. Write your answer

More information

Fundamental Counting Principle

Fundamental Counting Principle Lesson 88 Probability with Combinatorics HL2 Math - Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more

More information

In this section, we will learn to. 1. Use the Multiplication Principle for Events. Cheesecake Factory. Outback Steakhouse. P.F. Chang s.

In this section, we will learn to. 1. Use the Multiplication Principle for Events. Cheesecake Factory. Outback Steakhouse. P.F. Chang s. Section 10.6 Permutations and Combinations 10-1 10.6 Permutations and Combinations In this section, we will learn to 1. Use the Multiplication Principle for Events. 2. Solve permutation problems. 3. Solve

More information

CHAPTER - 7 PERMUTATIONS AND COMBINATIONS KEY POINTS When a job (task) is performed in different ways then each way is called the permutation. Fundamental Principle of Counting : If a job can be performed

More information

Multiple Choice Questions for Review

Multiple Choice Questions for Review Review Questions Multiple Choice Questions for Review 1. Suppose there are 12 students, among whom are three students, M, B, C (a Math Major, a Biology Major, a Computer Science Major. We want to send

More information

Discrete Structures Lecture Permutations and Combinations

Discrete Structures Lecture Permutations and Combinations Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

More information

MAT points Impact on Course Grade: approximately 10%

MAT points Impact on Course Grade: approximately 10% MAT 409 Test #3 60 points Impact on Course Grade: approximately 10% Name Score Solve each problem based on the information provided. It is not necessary to complete every calculation. That is, your responses

More information

Mathematics. (www.tiwariacademy.com) (Chapter 7) (Permutations and Combinations) (Class XI) Exercise 7.3

Mathematics. (www.tiwariacademy.com) (Chapter 7) (Permutations and Combinations) (Class XI) Exercise 7.3 Question 1: Mathematics () Exercise 7.3 How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated? Answer 1: 3-digit numbers have to be formed using the digits 1 to 9. Here,

More information

Section 6.4 Permutations and Combinations: Part 1

Section 6.4 Permutations and Combinations: Part 1 Section 6.4 Permutations and Combinations: Part 1 Permutations 1. How many ways can you arrange three people in a line? 2. Five people are waiting to take a picture. How many ways can you arrange three

More information

CSE 312: Foundations of Computing II Quiz Section #1: Counting

CSE 312: Foundations of Computing II Quiz Section #1: Counting CSE 312: Foundations of Computing II Quiz Section #1: Counting Review: Main Theorems and Concepts 1. Product Rule: Suppose there are m 1 possible outcomes for event A 1, then m 2 possible outcomes for

More information

NOTES ON SEPT 13-18, 2012

NOTES ON SEPT 13-18, 2012 NOTES ON SEPT 13-18, 01 MIKE ZABROCKI Last time I gave a name to S(n, k := number of set partitions of [n] into k parts. This only makes sense for n 1 and 1 k n. For other values we need to choose a convention

More information

NAME DATE PERIOD. Study Guide and Intervention

NAME DATE PERIOD. Study Guide and Intervention 9-1 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.

More information

Name: Section: Date:

Name: Section: Date: WORKSHEET 5: PROBABILITY Name: Section: Date: Answer the following problems and show computations on the blank spaces provided. 1. In a class there are 14 boys and 16 girls. What is the probability of

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Combinatorics (Part II)

Combinatorics (Part II) Combinatorics (Part II) BEGINNERS 02/08/2015 Warm-Up (a) How many five-digit numbers are there? (b) How many are odd? (c) How many are odd and larger than 30,000? (d) How many have only odd digits? (e)

More information

Counting in Algorithms

Counting in Algorithms Counting Counting in Algorithms How many comparisons are needed to sort n numbers? How many steps to compute the GCD of two numbers? How many steps to factor an integer? Counting in Games How many different

More information

Class 9 th Logical Reasoning

Class 9 th Logical Reasoning Year Questions Marks 2012 20 20 2013 20 20 2014 15 15 2015 15 15 2016 15 15 Total 85 85 1. In the following question, the symbols @,, $ and % is used with the following meanings as illustrated below: A

More information

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation

* Order Matters For Permutations * Section 4.6 Permutations MDM4U Jensen. Part 1: Factorial Investigation Section 4.6 Permutations MDM4U Jensen Part 1: Factorial Investigation You are trying to put three children, represented by A, B, and C, in a line for a game. How many different orders are possible? a)

More information

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39 CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

More information

2. How many even 4 digit numbers can be made using 0, 2, 3, 5, 6, 9 if no repeats are allowed?

2. How many even 4 digit numbers can be made using 0, 2, 3, 5, 6, 9 if no repeats are allowed? Math 30-1 Combinatorics Practice Test 1. A meal combo consists of a choice of 5 beverages, main dishes, and side orders. The number of different meals that are available if you have one of each is A. 15

More information

Kenken For Teachers. Tom Davis January 8, Abstract

Kenken For Teachers. Tom Davis   January 8, Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles January 8, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Lecture Notes Counting 101 Note to improve the readability of these lecture notes, we will assume that multiplication takes precedence over division, i.e. A / B*C

More information

ON THE ENUMERATION OF MAGIC CUBES*

ON THE ENUMERATION OF MAGIC CUBES* 1934-1 ENUMERATION OF MAGIC CUBES 833 ON THE ENUMERATION OF MAGIC CUBES* BY D. N. LEHMER 1. Introduction. Assume the cube with one corner at the origin and the three edges at that corner as axes of reference.

More information

PROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by

PROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by Classical Definition of Probability PROBABILITY Probability is the measure of how likely an event is. An experiment is a situation involving chance or probability that leads to results called outcomes.

More information

CHAPTER 5 BASIC CONCEPTS OF PERMUTATIONS AND COMBINATIONS

CHAPTER 5 BASIC CONCEPTS OF PERMUTATIONS AND COMBINATIONS CHAPTER 5 BASIC CONCEPTS OF PERMUTATIONS AND COMBINATIONS BASIC CONCEPTS OF PERM UTATIONS AND COM BINATIONS LEARNING OBJECTIVES After reading this Chapter a student will be able to understand difference

More information

Counting and Probability Math 2320

Counting and Probability Math 2320 Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A

More information