1. Compare between monotonic and commutative production system. 2. What is uninformed (or blind) search and how does it differ from informed (or

Size: px
Start display at page:

Download "1. Compare between monotonic and commutative production system. 2. What is uninformed (or blind) search and how does it differ from informed (or"

Transcription

1 1. Compare between monotonic and commutative production system. 2. What is uninformed (or blind) search and how does it differ from informed (or heuristic) search? 3. Compare between DFS and BFS. 4. Use the DFS algorithms to solve the Towers of Hanoi problem. 5. Use the BFS algorithms to solve the Towers of Hanoi problem. 6. How does depth limited search differ from Iterative Deepening Search? 7. In general, IDS is not complete. Why? 8. Identify a major disadvantage of bidirectional search. 9. Provide the search order for the nodes shown in following Figure with DFS. 10. Provide the search order for the nodes shown in following Figure with BFS, 11. Provide the search order for the nodes shown in following Figure with DLS (d=2). 12. Provide the search order for the nodes shown in following Figure with IDS (start depth = 1). 13. Provide the search order for the nodes shown in following Figure with BIDI (start node A, goal node I).

2 14. Using the Uniform Cost Search algorithm, find the shortest path from A to F in following Figure. 15. The missionaries and cannibals problem: 3 missionaries and 3 cannibals stand at the left bank of the river. They wish to cross over the river. There is a boat to ferry them across the river but it can hold at most 2 persons. Whenever there are more cannibals than missionaries on either bank of the river there is a risk of attack on the missionaries. The problem is to find out whether there is any possible sequence of moves to ferry 6 persons from left bank to right bank without any risk of attack on the missionaries. i. Formulate the problem as state-space search problem. ii. Draw the search graph depicting the possible moves to solve the problem. 16. Give a complete state-space search problem formulation and the solution for the following problem. i. Using only four colors, you have to color a planar map in such a way that no two adjacent regions have the same color. 17. Give a complete state-space search problem formulation the solution for the following problem. i. A 3-foot-tall monkey is in a room where some bananas are suspended from the 8- foot ceiling. He would like to get the bananas. The room contains two stackable, movable, climbable 3-foot-high crates. 18. Give a complete state-space search problem formulation the solution for the following problem. i. You have three jugs, measuring 12 gallons, 8 gallons, and 3 gallons, and a water faucet. You can fill the jugs up or empty them out from one to another or onto the ground. You need to measure out exactly one gallon. 19. What are advantages and disadvantages in finding solutions with DFS? 20. What are advantages and disadvantages in finding solutions with BFS? 21. Design heuristics for solving the 8-puzzle problem.

3 22. Design heuristics for solving the 8-queen problem 23. Discuss on various pitfalls and their corresponding remedies for hill climbing searching techniques. 24. How does simulated annealing search differ from hill climbing search technique? 25. What is the purpose of the Monte Carlo step in the simulated annealing algorithm? 26. Compare the intensification and diversification modifications of Tabu search. 27. Best-first search uses a combined heuristic to choose the best path to follow in the state space. Define the two heuristics used (h(n) and g(n)). 28. Best-first search uses both an OPEN list and a CLOSED list. Describe the purpose of each for the best-first algorithm. 29. Describe the differences between best-first search and greedy best-first search. 30. Describe the differences between best-first search and beam search. 31. What are the advantages of beam search over best-first search? 32. A* search uses a combined heuristic to select the best path to follow through the state space toward the goal. Define the two heuristics used (h(n) and g(n)). 33. Explain A* algorithm for solving 8-puzzle problem. 34. How does AO* algorithm differ from A* algorithm. 35. Provide the essence of a constraint satisfaction problem. 36. What are some of the major applications of constraint satisfaction search? 37. Compare and contrast the CSP algorithms of backtracking, forward checking, and look ahead. 38. Apply constraint satisfaction method to solve the following crypt-arithmetic problem- SEND + MORE = MONEY. 39. What do you mean by admissibility and consistency of a heuristic function? 40. Validate with explanation that if heuristic is consistent then the heuristic is admissible but the converse is not true. 41. What is meant by adversarial search, and how does it differ from traditional tree search? 42. Illustrate MINIMAX procedure with an example. 43. Given the game tree shown in Figure, what is the value at the root node? 44. How does alpha-beta pruning work in game playing?

4 45. Consider the two-player game described in following Figure. a. Draw the complete game tree, using the following conventions: Write each state as (sa, se), where sa and.5.8 denote the token locations. Put each terminal state in a square box and write its game value in a circle. Put loop states (states that already appear on the path to the root) in double square boxes. Since their value is unclear, annotate each with a "?" in a circle. b. Now mark each node with its backed-up minimax value (also in a circle). Explain how you handled the "?" values and why. c. Explain why the standard minimax algorithm would fail on this game tree and briefly sketch how you might fix it, drawing on your answer to (b). Does your modified algorithm give optimal decisions for all games with loops? d. This 4-square game can be generalized to n. squares for any n > 2. Prove that A wins if n is even and loscs if it is odd. Figure 45.The starting position of a simple game. Player A moves first. The two players take turns moving, and each player mus1 move his token to an open adjacent space in either direction. If the opponent occupies an adjacent space, then a player may jump over the opponent to the next open space if any. (For example, if A is on 3 and B is on 2, then A may move back to 1.1. The game ends when one player reaches the opposite end of the board. If player A teaches space 4 first, then the value of the game to A is +1; if player.3 reaches space 1 first, then the value of the game to A is How do you evaluate any search technique? 46. When does simulated annealing behave like hill climbing? 47. Compare blind search with heuristic search. 48. Consider the following logic puzzle: In five houses, each with a different color, live five persons of different nationalities, each of whom prefers a different brand of candy, a different drink, and a different pet. Given the following facts, the questions to answer are 'Where does the zebra live, and in which house do they drink water?" The Englishman lives in the red house. The Spaniard owns the dog. The Norwegian lives in the first house on the left. The green house is immediately to the right of the ivory house. The man who eats Hershey bars lives in the house next to the man with the fox. Kit Kats are eaten in the yellow house. The Norwegian lives next to the blue house. The Smarties eater owns snails. The Snickers eater drinks orange juice. The Ukrainian drinks tea. The Japanese eats Milky Ways. Kit Kats are eaten in a house next to the house where the horse is kept. Coffee is drunk in the green house. Milk is drunk in the middle house.

5 Discuss different representations of this problem as a CSP. Why would one prefer one representation over another? 49. The monkey-and-bananas problem is faced by a monkey in a laboratory with some bananas hanging out of reach from the ceiling. A box is available that will enable the monkey to reach the bananas if he climbs on it. Initially, the monkey is at A, the bananas at B, and the box at C. The monkey and box have height Law, but if the monkey climbs onto the box he will have height High, the same as the bananas. The actions available to the monkey include Go from one place to another, Push an object from one place to another, ClimbUp onto or ClirnbD own from an object, and Grasp or tin grasp an object. The result of a Grasp is that the monkey holds the object if the monkey and object are in the same place at the same height. a. Write down the initial state description. b.write the six action schemas. c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the honoring, hot leaving the box in its original place Write this as a general goal (i, not assuming that the box is necessarily at C) in the language of situation calculus. Can this goal be solved by a classical planning system? d. Your schema for pushing is probably incorrect, because if the object is too heavy, its position will remain the same when the Push schema is applied. Fix your action schema to account for heavy objects. 50. Write prolog program to implement 4-puzzle using hill climbing algorithm. 51. Write prolog program to find the GCD of two numbers. 52. Write prolog program to find the reverse of a list. 53. Write prolog program to find the Union of two lists. 54. Write prolog program to solve Tower of Hanoi through PROLOG. 55. Write prolog program to remove an item from i th position of a given list. 56. Write prolog program to find the Intersection of two lists. 57. Write prolog program to N-times left rotate shift of a list. 58. Write prolog program to implement 4-puzzle using DFS algorithm. 59. Write prolog program to find the product of digits of a given natural number. 60. Write prolog program to find n th Fibonacci number. 61. Write prolog program to find the maximum element of a list. 62. Write prolog program to find whether a number is prime number or not. 63. Write prolog program to find the factorial of a number. 64. Write prolog program to delete an element from the list for all the occurrences. 65. Write prolog program to find the summation of n terms of the series i i where i ranges from 1 to n.

UMBC CMSC 671 Midterm Exam 22 October 2012

UMBC CMSC 671 Midterm Exam 22 October 2012 Your name: 1 2 3 4 5 6 7 8 total 20 40 35 40 30 10 15 10 200 UMBC CMSC 671 Midterm Exam 22 October 2012 Write all of your answers on this exam, which is closed book and consists of six problems, summing

More information

Midterm Examination. CSCI 561: Artificial Intelligence

Midterm Examination. CSCI 561: Artificial Intelligence Midterm Examination CSCI 561: Artificial Intelligence October 10, 2002 Instructions: 1. Date: 10/10/2002 from 11:00am 12:20 pm 2. Maximum credits/points for this midterm: 100 points (corresponding to 35%

More information

UMBC 671 Midterm Exam 19 October 2009

UMBC 671 Midterm Exam 19 October 2009 Name: 0 1 2 3 4 5 6 total 0 20 25 30 30 25 20 150 UMBC 671 Midterm Exam 19 October 2009 Write all of your answers on this exam, which is closed book and consists of six problems, summing to 160 points.

More information

Your Name and ID. (a) ( 3 points) Breadth First Search is complete even if zero step-costs are allowed.

Your Name and ID. (a) ( 3 points) Breadth First Search is complete even if zero step-costs are allowed. 1 UC Davis: Winter 2003 ECS 170 Introduction to Artificial Intelligence Final Examination, Open Text Book and Open Class Notes. Answer All questions on the question paper in the spaces provided Show all

More information

COMP9414: Artificial Intelligence Adversarial Search

COMP9414: Artificial Intelligence Adversarial Search CMP9414, Wednesday 4 March, 004 CMP9414: Artificial Intelligence In many problems especially game playing you re are pitted against an opponent This means that certain operators are beyond your control

More information

A Historical Example One of the most famous problems in graph theory is the bridges of Konigsberg. The Real Koningsberg

A Historical Example One of the most famous problems in graph theory is the bridges of Konigsberg. The Real Koningsberg A Historical Example One of the most famous problems in graph theory is the bridges of Konigsberg The Real Koningsberg Can you cross every bridge exactly once and come back to the start? Here is an abstraction

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching 1 Terminology State State Space Goal Action Cost State Change Function Problem-Solving Agent State-Space Search 2 Formal State-Space Model Problem = (S, s, A, f, g, c) S =

More information

CS 32 Puzzles, Games & Algorithms Fall 2013

CS 32 Puzzles, Games & Algorithms Fall 2013 CS 32 Puzzles, Games & Algorithms Fall 2013 Study Guide & Scavenger Hunt #2 November 10, 2014 These problems are chosen to help prepare you for the second midterm exam, scheduled for Friday, November 14,

More information

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements CS 171 Introduction to AI Lecture 1 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Programming and experiments Simulated annealing + Genetic

More information

Midterm. CS440, Fall 2003

Midterm. CS440, Fall 2003 Midterm CS440, Fall 003 This test is closed book, closed notes, no calculators. You have :30 hours to answer the questions. If you think a problem is ambiguously stated, state your assumptions and solve

More information

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies Foundations of AI 3. Solving Problems by Searching Problem-Solving Agents, Formulating Problems, Search Strategies Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller SA-1 Contents

More information

15-381: Artificial Intelligence Assignment 3: Midterm Review

15-381: Artificial Intelligence Assignment 3: Midterm Review 15-381: Artificial Intelligence Assignment 3: Midterm Review Handed out: Tuesday, October 2 nd, 2001 Due: Tuesday, October 9 th, 2001 (in class) Solutions will be posted October 10 th, 2001: No late homeworks

More information

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here:

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here: Adversarial Search 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/adversarial.pdf Slides are largely based

More information

Written examination TIN175/DIT411, Introduction to Artificial Intelligence

Written examination TIN175/DIT411, Introduction to Artificial Intelligence Written examination TIN175/DIT411, Introduction to Artificial Intelligence Question 1 had completely wrong alternatives, and cannot be answered! Therefore, the grade limits was lowered by 1 point! Tuesday

More information

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies

Foundations of AI. 3. Solving Problems by Searching. Problem-Solving Agents, Formulating Problems, Search Strategies Foundations of AI 3. Solving Problems by Searching Problem-Solving Agents, Formulating Problems, Search Strategies Luc De Raedt and Wolfram Burgard and Bernhard Nebel Contents Problem-Solving Agents Formulating

More information

CSE 473 Midterm Exam Feb 8, 2018

CSE 473 Midterm Exam Feb 8, 2018 CSE 473 Midterm Exam Feb 8, 2018 Name: This exam is take home and is due on Wed Feb 14 at 1:30 pm. You can submit it online (see the message board for instructions) or hand it in at the beginning of class.

More information

: Principles of Automated Reasoning and Decision Making Midterm

: Principles of Automated Reasoning and Decision Making Midterm 16.410-13: Principles of Automated Reasoning and Decision Making Midterm October 20 th, 2003 Name E-mail Note: Budget your time wisely. Some parts of this quiz could take you much longer than others. Move

More information

CS 2710 Foundations of AI. Lecture 9. Adversarial search. CS 2710 Foundations of AI. Game search

CS 2710 Foundations of AI. Lecture 9. Adversarial search. CS 2710 Foundations of AI. Game search CS 2710 Foundations of AI Lecture 9 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square CS 2710 Foundations of AI Game search Game-playing programs developed by AI researchers since

More information

Solving Problems by Searching

Solving Problems by Searching Solving Problems by Searching Berlin Chen 2005 Reference: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 3 AI - Berlin Chen 1 Introduction Problem-Solving Agents vs. Reflex

More information

Q1. [11 pts] Foodie Pacman

Q1. [11 pts] Foodie Pacman CS 188 Spring 2011 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [11 pts] Foodie Pacman There are two kinds of food pellets, each with a different color (red and blue). Pacman is only

More information

Artificial Intelligence Lecture 3

Artificial Intelligence Lecture 3 Artificial Intelligence Lecture 3 The problem Depth first Not optimal Uses O(n) space Optimal Uses O(B n ) space Can we combine the advantages of both approaches? 2 Iterative deepening (IDA) Let M be a

More information

COMP5211 Lecture 3: Agents that Search

COMP5211 Lecture 3: Agents that Search CMP5211 Lecture 3: Agents that Search Fangzhen Lin Department of Computer Science and Engineering Hong Kong University of Science and Technology Fangzhen Lin (HKUST) Lecture 3: Search 1 / 66 verview Search

More information

Games and Adversarial Search II

Games and Adversarial Search II Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3) Some slides adapted from Richard Lathrop, USC/ISI, CS 271 Review: The Minimax Rule Idea: Make the best move for MAX assuming that MIN always

More information

CS 171, Intro to A.I. Midterm Exam Fall Quarter, 2016

CS 171, Intro to A.I. Midterm Exam Fall Quarter, 2016 CS 171, Intro to A.I. Midterm Exam all Quarter, 2016 YOUR NAME: YOUR ID: ROW: SEAT: The exam will begin on the next page. Please, do not turn the page until told. When you are told to begin the exam, please

More information

Problem 1. (15 points) Consider the so-called Cryptarithmetic problem shown below.

Problem 1. (15 points) Consider the so-called Cryptarithmetic problem shown below. ECS 170 - Intro to Artificial Intelligence Suggested Solutions Mid-term Examination (100 points) Open textbook and open notes only Show your work clearly Winter 2003 Problem 1. (15 points) Consider the

More information

Outline for today s lecture Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing

Outline for today s lecture Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing Informed Search II Outline for today s lecture Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing CIS 521 - Intro to AI - Fall 2017 2 Review: Greedy

More information

Adversarial Search 1

Adversarial Search 1 Adversarial Search 1 Adversarial Search The ghosts trying to make pacman loose Can not come up with a giant program that plans to the end, because of the ghosts and their actions Goal: Eat lots of dots

More information

10/5/2015. Constraint Satisfaction Problems. Example: Cryptarithmetic. Example: Map-coloring. Example: Map-coloring. Constraint Satisfaction Problems

10/5/2015. Constraint Satisfaction Problems. Example: Cryptarithmetic. Example: Map-coloring. Example: Map-coloring. Constraint Satisfaction Problems 0/5/05 Constraint Satisfaction Problems Constraint Satisfaction Problems AIMA: Chapter 6 A CSP consists of: Finite set of X, X,, X n Nonempty domain of possible values for each variable D, D, D n where

More information

UNIVERSITY of PENNSYLVANIA CIS 391/521: Fundamentals of AI Midterm 1, Spring 2010

UNIVERSITY of PENNSYLVANIA CIS 391/521: Fundamentals of AI Midterm 1, Spring 2010 UNIVERSITY of PENNSYLVANIA CIS 391/521: Fundamentals of AI Midterm 1, Spring 2010 Question Points 1 Environments /2 2 Python /18 3 Local and Heuristic Search /35 4 Adversarial Search /20 5 Constraint Satisfaction

More information

Game-Playing & Adversarial Search

Game-Playing & Adversarial Search Game-Playing & Adversarial Search This lecture topic: Game-Playing & Adversarial Search (two lectures) Chapter 5.1-5.5 Next lecture topic: Constraint Satisfaction Problems (two lectures) Chapter 6.1-6.4,

More information

Game Playing Beyond Minimax. Game Playing Summary So Far. Game Playing Improving Efficiency. Game Playing Minimax using DFS.

Game Playing Beyond Minimax. Game Playing Summary So Far. Game Playing Improving Efficiency. Game Playing Minimax using DFS. Game Playing Summary So Far Game tree describes the possible sequences of play is a graph if we merge together identical states Minimax: utility values assigned to the leaves Values backed up the tree

More information

Adverserial Search Chapter 5 minmax algorithm alpha-beta pruning TDDC17. Problems. Why Board Games?

Adverserial Search Chapter 5 minmax algorithm alpha-beta pruning TDDC17. Problems. Why Board Games? TDDC17 Seminar 4 Adversarial Search Constraint Satisfaction Problems Adverserial Search Chapter 5 minmax algorithm alpha-beta pruning 1 Why Board Games? 2 Problems Board games are one of the oldest branches

More information

CS 540: Introduction to Artificial Intelligence

CS 540: Introduction to Artificial Intelligence CS 540: Introduction to Artificial Intelligence Mid Exam: 7:15-9:15 pm, October 25, 2000 Room 1240 CS & Stats CLOSED BOOK (one sheet of notes and a calculator allowed) Write your answers on these pages

More information

Artificial Intelligence Search III

Artificial Intelligence Search III Artificial Intelligence Search III Lecture 5 Content: Search III Quick Review on Lecture 4 Why Study Games? Game Playing as Search Special Characteristics of Game Playing Search Ingredients of 2-Person

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 2 February, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 2 February, 2018 DIT411/TIN175, Artificial Intelligence Chapters 4 5: Non-classical and adversarial search CHAPTERS 4 5: NON-CLASSICAL AND ADVERSARIAL SEARCH DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 2 February,

More information

Search then involves moving from state-to-state in the problem space to find a goal (or to terminate without finding a goal).

Search then involves moving from state-to-state in the problem space to find a goal (or to terminate without finding a goal). Search Can often solve a problem using search. Two requirements to use search: Goal Formulation. Need goals to limit search and allow termination. Problem formulation. Compact representation of problem

More information

Artificial Intelligence Ph.D. Qualifier Study Guide [Rev. 6/18/2014]

Artificial Intelligence Ph.D. Qualifier Study Guide [Rev. 6/18/2014] Artificial Intelligence Ph.D. Qualifier Study Guide [Rev. 6/18/2014] The Artificial Intelligence Ph.D. Qualifier covers the content of the course Comp Sci 347 - Introduction to Artificial Intelligence.

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 7: CSP-II and Adversarial Search 2/6/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or

More information

Heuristics & Pattern Databases for Search Dan Weld

Heuristics & Pattern Databases for Search Dan Weld CSE 473: Artificial Intelligence Autumn 2014 Heuristics & Pattern Databases for Search Dan Weld Logistics PS1 due Monday 10/13 Office hours Jeff today 10:30am CSE 021 Galen today 1-3pm CSE 218 See Website

More information

Algorithms for Data Structures: Search for Games. Phillip Smith 27/11/13

Algorithms for Data Structures: Search for Games. Phillip Smith 27/11/13 Algorithms for Data Structures: Search for Games Phillip Smith 27/11/13 Search for Games Following this lecture you should be able to: Understand the search process in games How an AI decides on the best

More information

Adversary Search. Ref: Chapter 5

Adversary Search. Ref: Chapter 5 Adversary Search Ref: Chapter 5 1 Games & A.I. Easy to measure success Easy to represent states Small number of operators Comparison against humans is possible. Many games can be modeled very easily, although

More information

CS 188 Introduction to Fall 2014 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2014 Artificial Intelligence Midterm CS 88 Introduction to Fall Artificial Intelligence Midterm INSTRUCTIONS You have 8 minutes. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators only.

More information

Computing Science (CMPUT) 496

Computing Science (CMPUT) 496 Computing Science (CMPUT) 496 Search, Knowledge, and Simulations Martin Müller Department of Computing Science University of Alberta mmueller@ualberta.ca Winter 2017 Part IV Knowledge 496 Today - Mar 9

More information

CSE 573 Problem Set 1. Answers on 10/17/08

CSE 573 Problem Set 1. Answers on 10/17/08 CSE 573 Problem Set. Answers on 0/7/08 Please work on this problem set individually. (Subsequent problem sets may allow group discussion. If any problem doesn t contain enough information for you to answer

More information

Programming Project 1: Pacman (Due )

Programming Project 1: Pacman (Due ) Programming Project 1: Pacman (Due 8.2.18) Registration to the exams 521495A: Artificial Intelligence Adversarial Search (Min-Max) Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu

More information

Comp th February Due: 11:59pm, 25th February 2014

Comp th February Due: 11:59pm, 25th February 2014 HomeWork Assignment 2 Comp 590.133 4th February 2014 Due: 11:59pm, 25th February 2014 Getting Started What to submit: Written parts of assignment and descriptions of the programming part of the assignment

More information

Heuristics, and what to do if you don t know what to do. Carl Hultquist

Heuristics, and what to do if you don t know what to do. Carl Hultquist Heuristics, and what to do if you don t know what to do Carl Hultquist What is a heuristic? Relating to or using a problem-solving technique in which the most appropriate solution of several found by alternative

More information

CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 2015

CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 2015 CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 2015 YUR NAME: YUR ID: ID T RIGHT: RW: SEAT: The exam will begin on the next page. Please, do not turn the page until told. When you are told to begin

More information

AIMA 3.5. Smarter Search. David Cline

AIMA 3.5. Smarter Search. David Cline AIMA 3.5 Smarter Search David Cline Uninformed search Depth-first Depth-limited Iterative deepening Breadth-first Bidirectional search None of these searches take into account how close you are to the

More information

Name: Your EdX Login: SID: Name of person to left: Exam Room: Name of person to right: Primary TA:

Name: Your EdX Login: SID: Name of person to left: Exam Room: Name of person to right: Primary TA: UC Berkeley Computer Science CS188: Introduction to Artificial Intelligence Josh Hug and Adam Janin Midterm I, Fall 2016 This test has 8 questions worth a total of 100 points, to be completed in 110 minutes.

More information

Homework Assignment #1

Homework Assignment #1 CS 540-2: Introduction to Artificial Intelligence Homework Assignment #1 Assigned: Thursday, February 1, 2018 Due: Sunday, February 11, 2018 Hand-in Instructions: This homework assignment includes two

More information

More Prolog examples, recursive rules

More Prolog examples, recursive rules More Prolog examples, recursive rules Yves Lespérance Adapted from Peter Roosen-Runge 1 Zebra puzzle continued 2 the zebra puzzle 1. There are 5 houses, occupied by politically-incorrect gentlemen of 5

More information

Computer Science and Software Engineering University of Wisconsin - Platteville. 4. Game Play. CS 3030 Lecture Notes Yan Shi UW-Platteville

Computer Science and Software Engineering University of Wisconsin - Platteville. 4. Game Play. CS 3030 Lecture Notes Yan Shi UW-Platteville Computer Science and Software Engineering University of Wisconsin - Platteville 4. Game Play CS 3030 Lecture Notes Yan Shi UW-Platteville Read: Textbook Chapter 6 What kind of games? 2-player games Zero-sum

More information

CS188 Spring 2010 Section 3: Game Trees

CS188 Spring 2010 Section 3: Game Trees CS188 Spring 2010 Section 3: Game Trees 1 Warm-Up: Column-Row You have a 3x3 matrix of values like the one below. In a somewhat boring game, player A first selects a row, and then player B selects a column.

More information

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Richard Korf, Subbarao Kambhampati, and UW-AI faculty)

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Informed search algorithms Chapter 3 (Based on Slides by Stuart Russell, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Intuition, like the rays of the sun, acts only in an inflexibly straight

More information

6.034 Quiz 1 October 13, 2005

6.034 Quiz 1 October 13, 2005 6.034 Quiz 1 October 13, 2005 Name EMail Problem number 1 2 3 Total Maximum 35 35 30 100 Score Grader 1 Question 1: Rule-based reasoning (35 points) Mike Carthy decides to use his 6.034 knowledge to take

More information

CPS331 Lecture: Heuristic Search last revised 6/18/09

CPS331 Lecture: Heuristic Search last revised 6/18/09 CPS331 Lecture: Heuristic Search last revised 6/18/09 Objectives: 1. To introduce the use of heuristics in searches 2. To introduce some standard heuristic algorithms 3. To introduce criteria for evaluating

More information

6.034 Quiz 2 20 October 2010

6.034 Quiz 2 20 October 2010 6.034 Quiz 2 20 October 2010 Name email Circle your TA and recitation time (for 1 point), so that we can more easily enter your score in our records and return your quiz to you promptly. TAs Thu Fri Martin

More information

2 person perfect information

2 person perfect information Why Study Games? Games offer: Intellectual Engagement Abstraction Representability Performance Measure Not all games are suitable for AI research. We will restrict ourselves to 2 person perfect information

More information

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I Adversarial Search and Game- Playing C H A P T E R 6 C M P T 3 1 0 : S P R I N G 2 0 1 1 H A S S A N K H O S R A V I Adversarial Search Examine the problems that arise when we try to plan ahead in a world

More information

Lecture 7. Review Blind search Chess & search. CS-424 Gregory Dudek

Lecture 7. Review Blind search Chess & search. CS-424 Gregory Dudek Lecture 7 Review Blind search Chess & search Depth First Search Key idea: pursue a sequence of successive states as long as possible. unmark all vertices choose some starting vertex x mark x list L = x

More information

mywbut.com Two agent games : alpha beta pruning

mywbut.com Two agent games : alpha beta pruning Two agent games : alpha beta pruning 1 3.5 Alpha-Beta Pruning ALPHA-BETA pruning is a method that reduces the number of nodes explored in Minimax strategy. It reduces the time required for the search and

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Summer 2016 Introduction to Artificial Intelligence Midterm 1 You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib

More information

Section Marks Agents / 8. Search / 10. Games / 13. Logic / 15. Total / 46

Section Marks Agents / 8. Search / 10. Games / 13. Logic / 15. Total / 46 Name: CS 331 Midterm Spring 2017 You have 50 minutes to complete this midterm. You are only allowed to use your textbook, your notes, your assignments and solutions to those assignments during this midterm.

More information

Problem. Operator or successor function - for any state x returns s(x), the set of states reachable from x with one action

Problem. Operator or successor function - for any state x returns s(x), the set of states reachable from x with one action Problem & Search Problem 2 Solution 3 Problem The solution of many problems can be described by finding a sequence of actions that lead to a desirable goal. Each action changes the state and the aim is

More information

CS 771 Artificial Intelligence. Adversarial Search

CS 771 Artificial Intelligence. Adversarial Search CS 771 Artificial Intelligence Adversarial Search Typical assumptions Two agents whose actions alternate Utility values for each agent are the opposite of the other This creates the adversarial situation

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Non-classical search - Path does not

More information

CS188: Artificial Intelligence, Fall 2011 Written 2: Games and MDP s

CS188: Artificial Intelligence, Fall 2011 Written 2: Games and MDP s CS88: Artificial Intelligence, Fall 20 Written 2: Games and MDP s Due: 0/5 submitted electronically by :59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators) but must be written

More information

CS188 Spring 2010 Section 3: Game Trees

CS188 Spring 2010 Section 3: Game Trees CS188 Spring 2010 Section 3: Game Trees 1 Warm-Up: Column-Row You have a 3x3 matrix of values like the one below. In a somewhat boring game, player A first selects a row, and then player B selects a column.

More information

ARTIFICIAL INTELLIGENCE (CS 370D)

ARTIFICIAL INTELLIGENCE (CS 370D) Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) (CHAPTER-5) ADVERSARIAL SEARCH ADVERSARIAL SEARCH Optimal decisions Min algorithm α-β pruning Imperfect,

More information

UCI Math Circle October 10, Clock Arithmetic

UCI Math Circle October 10, Clock Arithmetic UCI Math Circle October 10, 2016 Clock Arithmetic 1. Pretend that it is 3:00 now (ignore am/pm). (a) What time will it be in 17 hours? (b) What time was it 22 hours ago? (c) The clock on the right has

More information

Project 1. Out of 20 points. Only 30% of final grade 5-6 projects in total. Extra day: 10%

Project 1. Out of 20 points. Only 30% of final grade 5-6 projects in total. Extra day: 10% Project 1 Out of 20 points Only 30% of final grade 5-6 projects in total Extra day: 10% 1. DFS (2) 2. BFS (1) 3. UCS (2) 4. A* (3) 5. Corners (2) 6. Corners Heuristic (3) 7. foodheuristic (5) 8. Suboptimal

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Topic 3 Problem Solving and Search Problem-solving and search Search algorithms Uninformed search algorithms breadth-first search uniform-cost search depth-first search iterative

More information

Module 3. Problem Solving using Search- (Two agent) Version 2 CSE IIT, Kharagpur

Module 3. Problem Solving using Search- (Two agent) Version 2 CSE IIT, Kharagpur Module 3 Problem Solving using Search- (Two agent) 3.1 Instructional Objective The students should understand the formulation of multi-agent search and in detail two-agent search. Students should b familiar

More information

Game-playing: DeepBlue and AlphaGo

Game-playing: DeepBlue and AlphaGo Game-playing: DeepBlue and AlphaGo Brief history of gameplaying frontiers 1990s: Othello world champions refuse to play computers 1994: Chinook defeats Checkers world champion 1997: DeepBlue defeats world

More information

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH Santiago Ontañón so367@drexel.edu Recall: Problem Solving Idea: represent the problem we want to solve as: State space Actions Goal check Cost function

More information

Game Playing State-of-the-Art

Game Playing State-of-the-Art Adversarial Search [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Game Playing State-of-the-Art

More information

Conversion Masters in IT (MIT) AI as Representation and Search. (Representation and Search Strategies) Lecture 002. Sandro Spina

Conversion Masters in IT (MIT) AI as Representation and Search. (Representation and Search Strategies) Lecture 002. Sandro Spina Conversion Masters in IT (MIT) AI as Representation and Search (Representation and Search Strategies) Lecture 002 Sandro Spina Physical Symbol System Hypothesis Intelligent Activity is achieved through

More information

Game Playing AI. Dr. Baldassano Yu s Elite Education

Game Playing AI. Dr. Baldassano Yu s Elite Education Game Playing AI Dr. Baldassano chrisb@princeton.edu Yu s Elite Education Last 2 weeks recap: Graphs Graphs represent pairwise relationships Directed/undirected, weighted/unweights Common algorithms: Shortest

More information

More on games (Ch )

More on games (Ch ) More on games (Ch. 5.4-5.6) Alpha-beta pruning Previously on CSci 4511... We talked about how to modify the minimax algorithm to prune only bad searches (i.e. alpha-beta pruning) This rule of checking

More information

CSC 396 : Introduction to Artificial Intelligence

CSC 396 : Introduction to Artificial Intelligence CSC 396 : Introduction to Artificial Intelligence Exam 1 March 11th - 13th, 2008 Name Signature - Honor Code This is a take-home exam. You may use your book and lecture notes from class. You many not use

More information

Building a Heuristic for Greedy Search

Building a Heuristic for Greedy Search Building a Heuristic for Greedy Search Christopher Wilt and Wheeler Ruml Department of Computer Science Grateful thanks to NSF for support. Wheeler Ruml (UNH) Heuristics for Greedy Search 1 / 11 This Talk

More information

Prepared by Vaishnavi Moorthy Asst Prof- Dept of Cse

Prepared by Vaishnavi Moorthy Asst Prof- Dept of Cse UNIT II-REPRESENTATION OF KNOWLEDGE (9 hours) Game playing - Knowledge representation, Knowledge representation using Predicate logic, Introduction tounit-2 predicate calculus, Resolution, Use of predicate

More information

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1 Adversarial Search Read AIMA Chapter 5.2-5.5 CIS 421/521 - Intro to AI 1 Adversarial Search Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan

More information

Experimental Comparison of Uninformed and Heuristic AI Algorithms for N Puzzle Solution

Experimental Comparison of Uninformed and Heuristic AI Algorithms for N Puzzle Solution Experimental Comparison of Uninformed and Heuristic AI Algorithms for N Puzzle Solution Kuruvilla Mathew, Mujahid Tabassum and Mohana Ramakrishnan Swinburne University of Technology(Sarawak Campus), Jalan

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Adversarial Search Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

CS4700 Fall 2011: Foundations of Artificial Intelligence. Homework #2

CS4700 Fall 2011: Foundations of Artificial Intelligence. Homework #2 CS4700 Fall 2011: Foundations of Artificial Intelligence Homework #2 Due Date: Monday Oct 3 on CMS (PDF) and in class (hardcopy) Submit paper copies at the beginning of class. Please include your NetID

More information

CS61B Lecture #33. Today: Backtracking searches, game trees (DSIJ, Section 6.5)

CS61B Lecture #33. Today: Backtracking searches, game trees (DSIJ, Section 6.5) CS61B Lecture #33 Today: Backtracking searches, game trees (DSIJ, Section 6.5) Coming Up: Concurrency and synchronization(data Structures, Chapter 10, and Assorted Materials On Java, Chapter 6; Graph Structures:

More information

Game Playing State-of-the-Art. CS 188: Artificial Intelligence. Behavior from Computation. Video of Demo Mystery Pacman. Adversarial Search

Game Playing State-of-the-Art. CS 188: Artificial Intelligence. Behavior from Computation. Video of Demo Mystery Pacman. Adversarial Search CS 188: Artificial Intelligence Adversarial Search Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 at UC Berkeley)

More information

22c:145 Artificial Intelligence

22c:145 Artificial Intelligence 22c:145 Artificial Intelligence Fall 2005 Informed Search and Exploration II Cesare Tinelli The University of Iowa Copyright 2001-05 Cesare Tinelli and Hantao Zhang. a a These notes are copyrighted material

More information

CS 188: Artificial Intelligence. Overview

CS 188: Artificial Intelligence. Overview CS 188: Artificial Intelligence Lecture 6 and 7: Search for Games Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Overview Deterministic zero-sum games Minimax Limited depth and evaluation

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 42. Board Games: Alpha-Beta Search Malte Helmert University of Basel May 16, 2018 Board Games: Overview chapter overview: 40. Introduction and State of the Art 41.

More information

CS 188 Fall Introduction to Artificial Intelligence Midterm 1

CS 188 Fall Introduction to Artificial Intelligence Midterm 1 CS 188 Fall 2018 Introduction to Artificial Intelligence Midterm 1 You have 120 minutes. The time will be projected at the front of the room. You may not leave during the last 10 minutes of the exam. Do

More information

CS 229 Final Project: Using Reinforcement Learning to Play Othello

CS 229 Final Project: Using Reinforcement Learning to Play Othello CS 229 Final Project: Using Reinforcement Learning to Play Othello Kevin Fry Frank Zheng Xianming Li ID: kfry ID: fzheng ID: xmli 16 December 2016 Abstract We built an AI that learned to play Othello.

More information

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH Santiago Ontañón so367@drexel.edu Recall: Adversarial Search Idea: When there is only one agent in the world, we can solve problems using DFS, BFS, ID,

More information

Practice Session 2. HW 1 Review

Practice Session 2. HW 1 Review Practice Session 2 HW 1 Review Chapter 1 1.4 Suppose we extend Evans s Analogy program so that it can score 200 on a standard IQ test. Would we then have a program more intelligent than a human? Explain.

More information

CMPUT 396 Tic-Tac-Toe Game

CMPUT 396 Tic-Tac-Toe Game CMPUT 396 Tic-Tac-Toe Game Recall minimax: - For a game tree, we find the root minimax from leaf values - With minimax we can always determine the score and can use a bottom-up approach Why use minimax?

More information

General Game Playing (GGP) Winter term 2013/ Summary

General Game Playing (GGP) Winter term 2013/ Summary General Game Playing (GGP) Winter term 2013/2014 10. Summary Sebastian Wandelt WBI, Humboldt-Universität zu Berlin General Game Playing? General Game Players are systems able to understand formal descriptions

More information

CSE 473: Artificial Intelligence Fall Outline. Types of Games. Deterministic Games. Previously: Single-Agent Trees. Previously: Value of a State

CSE 473: Artificial Intelligence Fall Outline. Types of Games. Deterministic Games. Previously: Single-Agent Trees. Previously: Value of a State CSE 473: Artificial Intelligence Fall 2014 Adversarial Search Dan Weld Outline Adversarial Search Minimax search α-β search Evaluation functions Expectimax Reminder: Project 1 due Today Based on slides

More information