Probability of Compound Events


 Nathaniel Lyons
 1 years ago
 Views:
Transcription
1 Lesson 33A Probability of Compound Events Name: Prerequisite: Describe Sample Space Study the example showing how to describe the sample space for an experiment. Then solve problems 1 8. Example Marcus and Bea play a game that involves rolling a number cube. Each face of the cube displays a different number from 1 through 6. Describe the sample space for this situation. What is the probability that the next roll of the cube results in an even number? The sample space is the set of all possible outcomes. In this case, the sample space is {1, 2, 3, 4, 5, 6}. When all of the outcomes are equally likely, the theoretical probability of an event is the ratio of the number of favorable outcomes to the total number of outcomes. There are 3 favorable outcomes for an even number: 2, 4, and 6. There are 6 possible outcomes. P(even) 5 number of favorable outcomes 5 3 total number of outcomes What is the theoretical probability of rolling a multiple of 3 in the example? Explain. 2 What is the theoretical probability of rolling an 8 in the example? Explain. 3 Describe two events that have the same probability using the sample space in the example. 4 What is the sample space when you flip a coin? What is the theoretical probability of landing on heads? Vocabulary sample space the set of possible outcomes for a situation or experiment. theoretical probability the probability of an event or outcome occurring based on the possible outcomes in a same space. Curriculum Associates, LLC Copying is not permitted. Lesson 33A Probability of Compound Events 345
2 Solve. 5 Trevon has 12 socks in a drawer. There are equal numbers of blue, black, and white socks. What is the sample space? Find the theoretical probability that a sock drawn at random out of the drawer is blue. Explain. 6 A bag contains 3 red marbles, 4 blue marbles, 5 purple marbles, and 6 white marbles. a. Find the theoretical probability of drawing a marble of each color. b. Jack performs an experiment and finds that the probability of drawing a purple marble is. He 1 4 concludes that the theoretical probability is incorrect. What is wrong with Jack s conclusion? 7 You toss a nickel and a dime. One outcome is heads for the nickel and tails for the dime: HT. What is the sample space for this experiment? What is the theoretical probability of getting at least 1 head? Explain. 8 Describe an experiment that has 12 possible outcomes. Then describe an event for that experiment that has a theoretical probability of Lesson 33A Probability of Compound Events Curriculum Associates, LLC Copying is not permitted.
3 Lesson 33A Name: Represent Sample Spaces and Identify Outcomes Study the example showing how to represent sample spaces and identify outcomes. Then solve problems 1 4. Example Katie is playing a word game in which tiles with single letters on them are drawn from a bag. Toward the end of the game, the remaining tiles have the letters Z, A, I, L, A, and L. Katie draws two tiles at random. Find all of the ways in which Katie can draw two of the same letter. You can make a table that lists all of the possibilities. Each listed pair is (first draw, second draw). There are 4 ways that Katie can draw two of the same letter. Z, A Z, I Z, L Z, A Z, L I, L I, A I, L I, Z I, A L, A L, L L, Z L, A L, I L, A L, L L, Z L, A L, I A, L A, Z A, A A, I A, L A, L A, Z A, A A, I A, L 1 You also can represent the sample space by using a tree diagram. The top letters are the first letter drawn. The lower letters are the second letter drawn. Complete the diagram. Z A I L A L 2 Explain how to use the tree diagram to find all of the ways that Katie can draw two of the same letter. Curriculum Associates, LLC Copying is not permitted. Lesson 33A Probability of Compound Events 347
4 Solve. 3 Chico spins Spinner A and then spins Spinner B. Spinner A a. Make a table to show the possible outcomes. How many possible outcomes are there? Spinner B b. In how many ways can Chico get the same number both times? c. In how many ways can he get two odd numbers? 4 Yolanda has three quarters. She tosses each quarter, one at a time. a. Make a tree diagram to show the possible outcomes when she tosses the quarters, one at a time. How many possible outcomes are there? b. In how many ways can Yolanda toss exactly two tails when she tosses the three quarters? c. In how many ways can Yolanda toss at least two tails when she tosses the three quarters? 348 Lesson 33A Probability of Compound Events Curriculum Associates, LLC Copying is not permitted.
5 Lesson 33A Name: Probabilities of Compound Events Study the example showing how to find probabilities of compound events. Then solve problems 1 6. Example Jeanne is playing a game with this spinner. She spins the pointer twice. What is the probability that the spinner lands on X exactly once? You can draw a tree diagram to understand the problem. X W Y Z W X Y Z W X Y Z W X Y Z W X Y Z W X Y Z There are 16 possible outcome. List the outcomes where the spinner landed on X exactly once: WX, XW, XY, XZ, YX, ZX. There are 6 favorable outcomes. The probability that the spinner will land on X exactly once is 6, or List the outcomes in which the spinner lands on X at least once. 2 What is the probability that the spinner lands on X at least once? Explain. 3 You can also use a table to help you. Complete the table. Use the table to find the probability that the spinner lands on Y exactly once. Explain. W X Y Z W WX X Y Z Curriculum Associates, LLC Copying is not permitted. Lesson 33A Probability of Compound Events 349
6 Solve. 4 You can buy popcorn at the Village Theater in small, medium, or large sizes. The popcorn can be buttered or plain. If all of the choices are equally likely, what is the probability that a customer chooses a medium size with butter? Explain. 5 Tommy plays a game in which he rolls two standard number cubes. On any one roll, what is the probability that the sum of the numbers rolled is an even number? Use a table to solve the problem. Show your work. Solution: 6 Jasmine creates a code formed by choosing two digits at random from 0 to 9. The digits can repeat. a. How many possible twodigit codes can be formed? b. What is the probability that the sum of the two digits is 8? Explain. 350 Lesson 33A Probability of Compound Events Curriculum Associates, LLC Copying is not permitted.
7 Lesson 33A Name: Find Compound Probability Study the example showing how to find the probability of a compound event. Then solve problems 1 9. Example At the gift wrap counter of a store, a customer can choose white or silver gift wrap; a red, blue, or green bow; and a plain or decorated gift tag. If all of the possible choices are equally likely, what is the probability that a customer orders a gift with a red bow and a decorated gift tag? You can use an organized table to identify the possible choices. Let W and S represent white and silver paper. Let R, B, and G represent red, blue, and green bows. Let P and D represent plain and decorated tags. There are 12 possible outcomes. List the outcomes where a customer chooses a red bow and a decorated tag: WRD and SRD. There are 2 favorable outcomes. The probability that the a customer chooses a red bow and a decorated tag is 2, or WRP WBP WGP WRD WBD WGD SRP SBP SGP SRD SBD SGD 1 Did you have to take the paper color into account when you found the probability in the example? 2 What is the probability that a customer does NOT choose a red bow and a decorated tag? Explain. 3 List the favorable outcomes if you want to find the probability that a customer chooses white wrapping paper and a plain tag. 4 What is the probability that a customer chooses white wrapping paper and a plain gift tag? Show how you found your answer. Curriculum Associates, LLC Copying is not permitted. Lesson 33A Probability of Compound Events 351
8 Solve. Use this situation for problems 5 8. Daren sells sweatshirts in small, medium, and large sizes. The sweatshirts are sold both with and without hoods, and they are available in gray, red, and yellow. 5 Draw a tree diagram or make a table to represent the sample space. How many outcomes are possible? 6 How many of the possible sweatshirts are medium sweatshirts with hoods? Use your answer to find the probability that a randomly chosen sweatshirt is a medium with a hood. 7 How many outcomes are sweatshirts with hoods? Use your answer to find the probability that a randomly chosen sweatshirt has a hood. 8 Suppose you select a sweatshirt at random. What are two compound events that have a probability of? You spin the spinner shown three times. How many possible outcomes are there? What is the probability that the pointer stops on the letter A exactly two times? Explain. C B A 352 Lesson 33A Probability of Compound Events Curriculum Associates, LLC Copying is not permitted.
9 Lesson 33A Name: Probability of Compound Events Solve the problems. 1 Lamont is buying a new car. He needs to pick a color and an interior style. He can choose from white, black, and blue with either a fabric or leather interior. If Lamont chooses from all of the options at random, what is the probability that he will choose a black car? What is the sample space for this situation? A 4 6 B 1 6 C 1 2 D You flip a coin three times. What is the probability of getting at least 1 head? A 1 8 B 3 8 C 7 8 D 1 Can making a list, table, or tree diagram help? Leon chose B as the correct answer. How did he get that answer? 3 Dai orders milk with her meal. The server asks her if she wants regular or chocolate. Dai can choose from skim, 2%, or whole, and from small, medium, or large. If all of the choices are equally likely to be ordered, what is the probability that Dai orders a regular, medium milk? Use a tree diagram to solve. Show your work. How can you use a tree diagram to determine favorable outcomes and all possible outcomes? Solution: Curriculum Associates, LLC Copying is not permitted. Lesson 33A Probability of Compound Events 353
10 Solve. 4 You form a twodigit whole number using the digits 1, 2, and 3. The digits can repeat. You want to find the probability that the first digit is less than the second digit. Tell whether each statement is True or False. What are the favorable outcomes in this situation? a. There are 6 possible outcomes. u True u False b. The probability is. u True u False 1 3 c. The number 23 is a favorable outcome. u True u False 5 Ming visited San Francisco (S), Dallas (D), and Lexington (L). In each city, she visited at least one of the following attractions: museum (M), ballpark (B), or concert hall (C). a. Make a table of all possible outcomes. How many possible outcomes are there for each city? b. Based on the table, what is the probability that Ming went to a museum in Dallas? Explain. 6 Ernest s favorite lunch is a turkey, lettuce, and tomato sandwich. Ernest can make the sandwich using either white bread or wheat bread. Sometimes he adds cheese, pickles, or mayonnaise in any combination, but other times he doesn t add anything. Ernest says that there are 8 different ways to make his favorite sandwich. Is he correct? Explain. What can Ernest choose from to make his sandwich? 354 Lesson 33A Probability of Compound Events Curriculum Associates, LLC Copying is not permitted.
108 Probability of Compound Events
Use any method to find the total number of outcomes in each situation. 6. Nathan has 4 tshirts, 4 pairs of shorts, and 2 pairs of flipflops. Use the Fundamental Counting Principle to find the number
More informationPractice Ace Problems
Unit 6: Moving Straight Ahead Investigation 2: Experimental and Theoretical Probability Practice Ace Problems Directions: Please complete the necessary problems to earn a maximum of 12 points according
More informationWhat is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?
Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and
More informationProbability of Independent and Dependent Events
706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from
More informationChapter 10 Practice Test Probability
Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its
More informationLesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes
NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate
More information104 Theoretical Probability
Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning
More informationName: Class: Date: ID: A
Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,
More informationFind the probability of an event by using the definition of probability
LESSON 101 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event
More information108 Probability of Compound Events
1. Find the number of tennis shoes available if they come in gray or white and are available in sizes 6, 7, or 8. 6 2. The table shows the options a dealership offers for a model of a car. 24 3. Elisa
More informationFAVORITE MEALS NUMBER OF PEOPLE Hamburger and French fries 17 Spaghetti 8 Chili 12 Vegetarian delight 3
Probability 1. Destiny surveyed customers in a restaurant to find out their favorite meal. The results of the survey are shown in the table. One person in the restaurant will be picked at random. Based
More informationAdriana tosses a number cube with faces numbered 1 through 6 and spins the spinner shown below at the same time.
Domain 5 Lesson 9 Compound Events Common Core Standards: 7.SP.8.a, 7.SP.8.b, 7.SP.8.c Getting the Idea A compound event is a combination of two or more events. Compound events can be dependent or independent.
More informationUnit 11 Probability. Round 1 Round 2 Round 3 Round 4
Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.
More informationLesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes
Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability
More informationLesson 3: Chance Experiments with Equally Likely Outcomes
Lesson : Chance Experiments with Equally Likely Outcomes Classwork Example 1 Jamal, a 7 th grader, wants to design a game that involves tossing paper cups. Jamal tosses a paper cup five times and records
More informationCOMPOUND PROBABILITIES USING LISTS, TREE DIAGRAMS AND TABLES
OMOUN OBBILITIES USING LISTS, TEE IGMS N TBLES LESSON 2G EXLOE! Each trimester in E a student will play one sport. For first trimester the possible sports are soccer, tennis or golf. For second trimester
More informationName Date. Sample Spaces and Probability For use with Exploration 12.1
. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of
More informationCompound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.
Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event
More informationLesson 15.5: Independent and Dependent Events
Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the
More informationPractice 91. Probability
Practice 91 Probability You spin a spinner numbered 1 through 10. Each outcome is equally likely. Find the probabilities below as a fraction, decimal, and percent. 1. P(9) 2. P(even) 3. P(number 4. P(multiple
More informationTheoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability?
Name:Date:_/_/ Theoretical or Experimental Probability? Are the following situations examples of theoretical or experimental probability? 1. Finding the probability that Jeffrey will get an odd number
More informationMATH STUDENT BOOK. 7th Grade Unit 6
MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20
More information2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2
Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the
More informationUse this information to answer the following questions.
1 Lisa drew a token out of the bag, recorded the result, and then put the token back into the bag. She did this 30 times and recorded the results in a bar graph. Use this information to answer the following
More informationCompound Events. Identify events as simple or compound.
11.1 Compound Events Lesson Objectives Understand compound events. Represent compound events. Vocabulary compound event possibility diagram simple event tree diagram Understand Compound Events. A compound
More informationCCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES:
CCM6+7+ Unit 11 ~ Page 1 CCM6+7+ UNIT 11 PROBABILITY Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: Unit 11 Vocabulary List 2 Simple Event Probability 37 Expected Outcomes Making Predictions 89 Theoretical
More informationLesson 17.1 Assignment
Lesson 17.1 Assignment Name Date Is It Better to Guess? Using Models for Probability Charlie got a new board game. 1. The game came with the spinner shown. 6 7 9 2 3 4 a. List the sample space for using
More informationKey Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events
154 Compound Probability TEKS FOCUS TEKS (1)(E) Apply independence in contextual problems. TEKS (1)(B) Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy,
More informationUnit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements
Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More informationgreen, green, green, green, green The favorable outcomes of the event are blue and red.
5 Chapter Review Review Key Vocabulary experiment, p. 6 outcomes, p. 6 event, p. 6 favorable outcomes, p. 6 probability, p. 60 relative frequency, p. 6 Review Examples and Exercises experimental probability,
More informationACTIVITY: Conducting Experiments
0. Outcomes and Events the number of possible results? In an experiment, how can you determine An experiment is an investigation or a procedure that has varying results. Flipping a coin, rolling a number
More informationIndependent Events B R Y
. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent
More informationStudy Guide Probability SOL s 6.16, 7.9, & 7.10
Study Guide Probability SOL s 6.16, 7.9, & 7.10 What do I need to know for the upcoming assessment? Find the probability of simple events; Determine if compound events are independent or dependent; Find
More informationWhat Do You Expect? Concepts
Important Concepts What Do You Expect? Concepts Examples Probability A number from 0 to 1 that describes the likelihood that an event will occur. Theoretical Probability A probability obtained by analyzing
More informationA 20% B 25% C 50% D 80% 2. Which spinner has a greater likelihood of landing on 5 rather than 3?
1. At a middle school, 1 of the students have a cell phone. If a student is chosen at 5 random, what is the probability the student does not have a cell phone? A 20% B 25% C 50% D 80% 2. Which spinner
More informationReview. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers
FOUNDATIONS Outline Sec. 31 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into
More information2. Complete the congruence statements based on the corresponding sides of the congruent triangles.
Name Practice Quiz (6.4 6.8 & 11.9) 1. Name the corresponding sides and the corresponding angles. D DF D F 2. omplete the congruence statements based on the corresponding sides of the congruent triangles.
More informationName: 1. Match the word with the definition (1 point each  no partial credit!)
Chapter 12 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. SHOW ALL YOUR WORK!!! Remember
More informationBell Work. WarmUp Exercises. Two sixsided dice are rolled. Find the probability of each sum or 7
WarmUp Exercises Two sixsided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? WarmUp Notes Exercises
More informationLesson Lesson 3.7 ~ Theoretical Probability
Theoretical Probability Lesson.7 EXPLORE! sum of two number cubes Step : Copy and complete the chart below. It shows the possible outcomes of one number cube across the top, and a second down the left
More informationFair Game Review. Chapter 9. Simplify the fraction
Name Date Chapter 9 Simplify the fraction. 1. 10 12 Fair Game Review 2. 36 72 3. 14 28 4. 18 26 5. 32 48 6. 65 91 7. There are 90 students involved in the mentoring program. Of these students, 60 are girls.
More informationWorksheets for GCSE Mathematics. Probability. mrmathematics.com Maths Resources for Teachers. Handling Data
Worksheets for GCSE Mathematics Probability mrmathematics.com Maths Resources for Teachers Handling Data Probability Worksheets Contents Differentiated Independent Learning Worksheets Probability Scales
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More informationTEKSING TOWARD STAAR MATHEMATICS GRADE 7. Projection Masters
TEKSING TOWARD STAAR MATHEMATICS GRADE 7 Projection Masters Six Weeks 1 Lesson 1 STAAR Category 1 Grade 7 Mathematics TEKS 7.2A Understanding Rational Numbers A group of items or numbers is called a set.
More information2. Heather tosses a coin and then rolls a number cube labeled 1 through 6. Which set represents S, the sample space for this experiment?
1. Jane flipped a coin and rolled a number cube with sides labeled 1 through 6. What is the probability the coin will show heads and the number cube will show the number 4? A B C D 1 6 1 8 1 10 1 12 2.
More informationData Collection Sheet
Data Collection Sheet Name: Date: 1 Step Race Car Game Play 5 games where player 1 moves on roles of 1, 2, and 3 and player 2 moves on roles of 4, 5, # of times Player1 wins: 3. What is the theoretical
More informationThese Are A Few of My Favorite Things
LESSON.1 Skills Practice Name Date These Are A Few of My Favorite Things Modeling Probability Vocabulary Match each term to its corresponding definition. 1. event a. all of the possible outcomes in a probability
More informationA 21.0% B 34.3% C 49.0% D 70.0%
. For a certain kind of plant, 70% of the seeds that are planted grow into a flower. If Jenna planted 3 seeds, what is the probability that all of them grow into flowers? A 2.0% B 34.3% C 49.0% D 70.0%
More informationWhen a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
More informationChapter 13 Test Review
1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find
More informationIntro to Algebra Guided Notes (Unit 11)
Intro to Algebra Guided Notes (Unit 11) PA 121, 122, 123, 127 Alg 122, 123, 124 NAME 121 StemandLeaf Plots StemandLeaf Plot: numerical data are listed in ascending or descending order. The
More information1. Theoretical probability is what should happen (based on math), while probability is what actually happens.
Name: Date: / / QUIZ DAY! FillintheBlanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental
More informationUNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet
Name Period Date UNIT 5: RATIO, PROPORTION, AND PERCENT WEEK 20: Student Packet 20.1 Solving Proportions 1 Add, subtract, multiply, and divide rational numbers. Use rates and proportions to solve problems.
More informationProbability Essential Math 12 Mr. Morin
Probability Essential Math 12 Mr. Morin Name: Slot: Introduction Probability and Odds Single Event Probability and Odds Two and Multiple Event Experimental and Theoretical Probability Expected Value (Expected
More informationTheoretical Probability of Compound Events. ESSENTIAL QUESTION How do you find the probability of a compound event? 7.SP.3.8, 7.SP.3.8a, 7.SP.3.
LESSON 13.2 Theoretical Probability of Compound Events 7.SP.3.8 Find probabilities of compound events using organized lists, tables, tree diagrams,. 7.SP.3.8a, 7.SP.3.8b ESSENTIAL QUESTION How do you find
More informationSection 7.1 Experiments, Sample Spaces, and Events
Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.
More informationNAME DATE PERIOD. Study Guide and Intervention
91 Section Title The probability of a simple event is a ratio that compares the number of favorable outcomes to the number of possible outcomes. Outcomes occur at random if each outcome occurs by chance.
More informationName Class Date. Introducing Probability Distributions
Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 86 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video
More informationMath 7 Notes  Unit 7B (Chapter 11) Probability
Math 7 Notes  Unit 7B (Chapter 11) Probability Probability Syllabus Objective: (7.2)The student will determine the theoretical probability of an event. Syllabus Objective: (7.4)The student will compare
More informationMath 1 Unit 4 MidUnit Review Chances of Winning
Math 1 Unit 4 MidUnit Review Chances of Winning Name My child studied for the Unit 4 MidUnit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition
More informationPart 1: I can express probability as a fraction, decimal, and percent
Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:
More informationApplications. 28 How Likely Is It? P(green) = 7 P(yellow) = 7 P(red) = 7. P(green) = 7 P(purple) = 7 P(orange) = 7 P(yellow) = 7
Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability that you will choose each color. P(green)
More informationMath 7, Unit 5: Probability  NOTES
Math 7, Unit 5: Probability  NOTES NVACS 7. SP.C.5  Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers
More informationWelcome! U4H2: Worksheet # s 27, 913, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work.
Welcome! U4H2: Worksheet # s 27, 913, 16, 20 Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. 1 Review U4H1 2 Theoretical Probability 3 Experimental Probability
More information2. A bubblegum machine contains 25 gumballs. There are 12 green, 6 purple, 2 orange, and 5 yellow gumballs.
A C E Applications Connections Extensions Applications. A bucket contains one green block, one red block, and two yellow blocks. You choose one block from the bucket. a. Find the theoretical probability
More informationUnit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?
Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can
More informationChance and Probability
F Student Book Name Series F Contents Topic Chance and probability (pp. 0) ordering events relating fractions to likelihood chance experiments fair or unfair the mathletics cup create greedy pig solve
More informationName. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.
Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided
More informationNotes #45 Probability as a Fraction, Decimal, and Percent. As a result of what I learn today, I will be able to
Notes #45 Probability as a Fraction, Decimal, and Percent As a result of what I learn today, I will be able to Probabilities can be written in three ways:,, and. Probability is a of how an event is to.
More informationThis unit will help you work out probability and use experimental probability and frequency trees. Key points
Get started Probability This unit will help you work out probability and use experimental probability and frequency trees. AO Fluency check There are 0 marbles in a bag. 9 of the marbles are red, 7 are
More informationGraphs and Probability
Name: Chapter Date: Practice 1 Making and Interpreting Double Bar Graphs Complete. Use the data in the graph. The double bar graph shows the number of boys and girls in two classes, 5A and 5B. Students
More informationProbability and Statistics 15% of EOC
MGSE912.S.CP.1 1. Which of the following is true for A U B A: 2, 4, 6, 8 B: 5, 6, 7, 8, 9, 10 A. 6, 8 B. 2, 4, 6, 8 C. 2, 4, 5, 6, 6, 7, 8, 8, 9, 10 D. 2, 4, 5, 6, 7, 8, 9, 10 2. This Venn diagram shows
More informatione. Are the probabilities you found in parts (a)(f) experimental probabilities or theoretical probabilities? Explain.
1. Josh is playing golf. He has 3 white golf balls, 4 yellow golf balls, and 1 red golf ball in his golf bag. At the first hole, he randomly draws a ball from his bag. a. What is the probability he draws
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationName Date Class. 2. dime. 3. nickel. 6. randomly drawing 1 of the 4 S s from a bag of 100 Scrabble tiles
Name Date Class Practice A Tina has 3 quarters, 1 dime, and 6 nickels in her pocket. Find the probability of randomly drawing each of the following coins. Write your answer as a fraction, as a decimal,
More informationProbability of Compound Events. ESSENTIAL QUESTION How do you find the probability of a compound event? 7.6.I
? LESSON 6.2 heoretical Probability of Compound Events ESSENIAL QUESION ow do you find the probability of a compound event? Proportionality 7.6.I Determine theoretical probabilities related to simple and
More informationToss two coins 10 times. Record the number of heads in each trial, in a table.
Coin Experiment When we toss a coin in the air, we expect it to finish on a head or tail with equal likelihood. What to do: Toss one coin 20 times. ecord the number of heads in each trial, in a table:
More informationSECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability
SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability Name Period Write all probabilities as fractions in reduced form! Use the given information to complete problems 13. Five students have the
More informationProbability WarmUp 2
Probability WarmUp 2 Directions Solve to the best of your ability. (1) Write out the sample space (all possible outcomes) for the following situation: A dice is rolled and then a color is chosen, blue
More informationLesson 16.1 Skills Practice
Lesson 6. Skills Practice Name_Date Rolling, Rolling, Rolling... Defining and Representing Probability Vocabulary Write the term from the box that best completes each statement. experiment probability
More informationMost of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.
AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:
More informationMATH STUDENT BOOK. 8th Grade Unit 10
MATH STUDENT BOOK 8th Grade Unit 10 Math 810 Probability Introduction 3 1. Outcomes 5 Tree Diagrams and the Counting Principle 5 Permutations 12 Combinations 17 Mixed Review of Outcomes 22 SELF TEST 1:
More informationBellwork Write each fraction as a percent Evaluate P P C C 6
Bellwork 21915 Write each fraction as a percent. 1. 2. 3. 4. Evaluate. 5. 6 P 3 6. 5 P 2 7. 7 C 4 8. 8 C 6 1 Objectives Find the theoretical probability of an event. Find the experimental probability
More informationChance and Probability
G Student Book Name Series G Contents Topic Chance and probability (pp. ) probability scale using samples to predict probability tree diagrams chance experiments using tables location, location apply lucky
More informationCompound Events: Making an Organized List
136 8 7.SP.6 7.SP.8a 7.SP.8b Objective Common Core State Standards Compound Events: Making an Organized List Experience with experiments helps students build on their intuitive sense about probability.
More informationMATH7 SOL Review 7.9 and Probability and FCP Exam not valid for Paper Pencil Test Sessions
MATH7 SOL Review 7.9 and 7.0  Probability and FCP Exam not valid for Paper Pencil Test Sessions [Exam ID:LV0BM Directions: Click on a box to choose the number you want to select. You must select all
More informationProbability of Compound Events. Lesson 3
Probability of Compound Events Lesson 3 Objective Students will be able to find probabilities of compound events using organized lists, tables, and tree diagrams. They will also understand that, just as
More informationIf Maria picks a card without looking, what is the probability she will choose a number less than 5?
. armen will spin the spinner below. What is the probability that the spinner will land on a letter from the word EXTRORINRY? 9. Maria has a set of cards numbered through 0. If Maria picks a card without
More informationProbability and the Monty Hall Problem Rong Huang January 10, 2016
Probability and the Monty Hall Problem Rong Huang January 10, 2016 Warmup: There is a sequence of number: 1, 2, 4, 8, 16, 32, 64, How does this sequence work? How do you get the next number from the previous
More informationMATH8 SOL8.12 Probability CW Exam not valid for Paper Pencil Test Sessions
MTH SOL. Probability W Exam not valid for Paper Pencil Test Sessions [Exam I:NFP0 box contains five cards lettered,,,,. If one card is selected at random from the box and NOT replaced, what is the probability
More informationData Analysis & Probability Counting Techniques & Probability (Notes)
Data Analysis & Probability Counting Techniques & Probability (Notes) Name I can Date Essential Question(s): Key Concepts Notes Fundamental Counting Principle Factorial Permutations Combinations What is
More informationHomework #119: Use the Counting Principle to answer the following questions.
Section 4.3: Tree Diagrams and the Counting Principle Homework #119: Use the Counting Principle to answer the following questions. 1) If two dates are selected at random from the 365 days of the year
More informationEssential Question How can you list the possible outcomes in the sample space of an experiment?
. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment
More informationProbability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )
Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom
More informationToss two coins 60 times. Record the number of heads in each trial, in a table.
Coin Experiment When we toss a coin in the air, we expect it to finish on a head or tail with equal likelihood. What to do: Toss one coin 40 times. ecord the number of heads in each trial, in a table:
More informationA. 15 B. 24 C. 45 D. 54
A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative
More informationFALL 2012 MATH 1324 REVIEW EXAM 4
FALL 01 MATH 134 REVIEW EXAM 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the sample space for the given experiment. 1) An ordinary die
More informationAlgebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations
Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)
More informationCommon Core Math Tutorial and Practice
Common Core Math Tutorial and Practice TABLE OF CONTENTS Chapter One Number and Numerical Operations Number Sense...4 Ratios, Proportions, and Percents...12 Comparing and Ordering...19 Equivalent Numbers,
More information