Virtual Road Signs: Augmented Reality Driving Aid for Novice Drivers

Size: px
Start display at page:

Download "Virtual Road Signs: Augmented Reality Driving Aid for Novice Drivers"

Transcription

1 Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting 1750 Virtual Road Signs: Augmented Reality Driving Aid for Novice Drivers Prerana Rane 1, Hyungil Kim 2, Juan Lopez Marcano 1, and Joseph L. Gabbard 2 Department of 1 Electrical & Computer, 2 Industrial & Systems Engineering, Virginia Tech Studies have shown that experts are more sensitive to changes in the road scene than novice drivers, and use the driving patterns of other cars to infer important information. A tool that can help bridge the gap between experts and novices may be augmented reality (AR), which can be used to graphically overlay virtual information onto the real world that may not otherwise be easily inferred. In this paper, we propose an AR interface that aims to improve the sensation, attention, situation awareness and decision making of international drivers who are new to the United States (US). We present results of a preliminary study that identifies the needs of novice international drivers as well as an AR interface design created to support these needs. Contextual inquiry and analysis techniques were used to extract the needs of novice international drivers. Based on observations, iterative designs and a prototype were developed that merge AR and audio feedback. Lastly, the prototype was evaluated by two usability experts, who performed a heuristic walkthrough based on the principles of human information processing. The experts conclude that the interface has the potential of increasing the sensation, attention, situation awareness and decision making while reducing the mental workload of novice international drivers. Future work will include an empirical study to support the observations of the analytical evaluation presented herein. Copyright 2016 by Human Factors and Ergonomics Society. DOI / INTRODUCTION Creating technologies to increase the skills and safety of drivers is a very active topic of research. Such technologies offer promise since a large amount of traffic accidents are caused by drivers who are not capable of perceiving hazardous objects (Rickesh & Naveen Vignesh, 2011; Underwood, 2007; Wai-Tat, Gasper, & Seong-Whan, 2013; Young, Lenné, Beanland, Salmon, & Stanton, 2015). Expert drivers are more sensitive to changes in road environments than novice drivers (Underwood, 2007). For example, experts perceived and anticipated hazardous situations much better than beginners presumably because novices do not have the same high levels of situation awareness, which prevents them from understanding the complexity of the road ahead of them. Understanding the complexity of situations is even more difficult for foreign drivers. Dissanayake & Lu (2001) describe the problems that foreign drivers, both experts and beginners, had in understanding road signs. In the study, 69% of the drivers were experts and 31% were beginners, and none could understand the meaning of the Divided Highway Ends sign. Alarmingly, only 60% of the drivers in the study reacted appropriately to yellow lights. Aside from situation awareness and mental models, human limitations also affect drivers. Drivers need to pay attention to the roadway, sense the most relevant environmental elements, perceive required information, comprehend their meaning, and predict their status in the near future to decide appropriate responses and react to environmental changes. However, the limited capability of human vision (field of view and depth of field) does not allow drives to easily access all required information. Augmented Reality (AR), integrates display and reality using conformal graphics to guide the driver s attention to the most relevant environmental elements, thus making it a good candidate to address these issues. In AR, graphics are overlaid atop real environments in real time (conformal). While AR can be used for entertainment (e.g., interactive games), it has also been found to be an effective visualization technique to display information that users can not directly detect with their own senses. Thus, well-designed AR interfaces have the promise to enhance users perceptions by amplifying their intelligence and skills (Azuma, 1997). In surface transportation, AR head-up displays (HUDs) can guide drivers attention to relevant environmental elements. HUDs can support driver s attention by cueing important elements in such as objects difficult to see (e.g., low-visibility settings), occluded objects, objects out of drivers field of view, and of course additional information associated with objects in view. In a simulation study, Charissis & Papanastasiou (2010) found that virtual representations of vehicles, lane edges, and driving directions resulted in less collisions under limited visibility conditions (e.g., fog) with sudden traffic congestion. Yasuda & Ohama (2012) enhanced drivers attention by using x-ray vision metaphor at blind corners to reduce crossing collisions. Kim et al. examined how AR HUDs can inform drivers with vehicles in blind spot (Kim, Wu, Gabbard, & Polys, 2013) and dynamics of cross traffic (Kim et al., 2016). The study presented herein explored how AR HUDs can be used to train international drivers who are new to the US, which, to the best of our knowledge, has not been investigated before. In fact, most of the work that has been done in the AR area comes in the form of artificial intelligence, not in HCI or Human Factors. Much of the work to date, has examined whether participants can recognize AR objects, not to what degree AR HUD interfaces can help increase the skills of novice drivers. We examine this issue by creating an interface that contains virtual road signs and audio feedback. This interface was iteratively evolved using a user experience (UX) lifecycle in order to extract the problems that are most likely to affect drivers, and then design and prototype an interface that can potentially increase the skills and safety of drivers. This preliminary study was evaluated by two usability experts who concluded that the AR HUD interface can potentially increase drivers sensation, attention, situation

2 Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting 1751 awareness and decision making. In addition to contributing to the knowledge on human information processing in driving scenarios, our findings can be used to inform other researchers and practitioners on UX processes used to analyze, design, and evaluate AR HUD interfaces. METHOD We realized the AR HUD Interface using the UX lifecycle proposed by Hartson & Pyla (2012), which consists of analysis, design, prototyping, and evaluation phases. Through our study, we sought to answer the following research questions: (1) What are the difficulties that novice international drivers may face while driving in the US? (2) What design elements in an AR HUD interface would best help resolve the difficulties? Prior to the formal requirements analysis phase, we listed the difficulties that we thought novice international drivers faced (note that some of the authors have direct and recent experience as novice international drivers in new environments). We assumed that novice drivers in new areas may be apprehensive about driving due to distances needed to travel, time behind the wheel, mental state, complexity of locale, or may not know the meaning of all road signs; may not be aware of how lane-changing rules work in the US; may not know the speed limits on different roads; and may avoid unfamiliar areas. Also, some international drivers are accustomed to driving on the left-hand side of the road; and may not understand the language the signs are written in or the units used. Contextual Inquiry processes were used to validate these assumptions Requirements Analysis Contextual inquiry with novice international drivers was performed in the high-fidelity simulator (Figure 1) using prerecorded driving footage. The video was 15 minutes long and was shown to five international drivers new to the US. As participants watched the video and emulated driving, we observed participants behavior. An observer, who was sitting behind the passenger seat, noted the participants attention management, steering, pedal, and turn-signal usage. To further measure pedal usage, we timestamped all the scenarios at specific moments when drivers should employ brakes. Using the timestamps as reference points, a rating system was developed to assess brake usage. Participants who used the brakes at the predetermined timestamp received a neutral score; if participants used the brakes before the timestamp, they received a positive score; and if they used the brakes after the timestamp, they received a negative score. An interviewer, who sat in the passenger seat, asked the participant questions related to events in the video. These events included pedestrians crossing the road, approaching cyclists, road signs, etc. For instance, for the event when the driver is approaching a cyclist, the interviewer asked the driver whether or not they saw the cyclist and how they felt. In addition, the interviewer encouraged participants to think aloud and express their thoughts, goals, rationale, frustrations, etc. at any time. After gathering the data, a contextual analysis was performed. We made an affinity diagram using activity notes derived from participants responses and additional comments. Activity notes were classified into different groups, and were then used to guide extraction of participants needs and requirements, as suggested by Beyer & Holtzblatt (1997). Participants needs and requirements were also used to assess the validity of our assumptions. The contextual analysis helped narrow down the list of difficulties faced by novice international drivers. The key findings were that potential drivers did not know the meaning of some road signs such as roundabout/traffic circle sign and construction zone. The participants were not aware of the designated speed limit in several situations. A new observation that emerged from the analysis was that novice international drivers are not comfortable with approaching cyclists or pedestrians on the road. The last step in the requirements analysis phase was to further inform our design based on the participants verbal comments. Comments from the participants such as I do not have an eye for speed limits and I do not know what the cyclist is going to do and I do not know what I am supposed to do gave us some insight on what the underlying problems regarding speed limits and cyclists are. It seems that the problems are generally related to visibility for speed limits and prediction for cyclists. Our analysis suggested that the design should magnify, highlight, or make road signs more visible and should either tell the driver what approaching cyclists may do, or suggest what actions/path the driver should take. Interface Design Based on the result of contextual analysis, we created a persona to help keep novice international drivers in the forefront of design decisions. The persona used, Chinmay, is an international graduate student from India. He is not familiar with the US driving laws and the right lane driving system. He has recently joined the university and is not familiar with the area. He does not have much experience in driving and is not confident driving on the main roads. He gets distracted by the numerous signs that he has to watch out for and he drives cautiously around cyclists and pedestrians. During the ideation phase, a few sample designs were sketched to specifically address the needs identified by the analysis phase, i.e., road signs, speed limits and collision warning (pedestrians and cyclists). The design ideas, suggested to help drivers understand the meaning of road signs and to enable them to take the best possible action in a given situation, included highlighting and enlarging road signs relevant to the driver on the AR HUD; pop-up messages attached to road signs such as "Apply the brakes" linked to stop signs, "Pedestrians and Cyclists frequently walk across. Careful!" at pedestrian crossings; and audio feedback instructing the driver what to do when he sees a road sign instead of explaining the meaning. To get drivers familiar with the speed limits on the road and give an indication of whether they are above/below the limit and by how much, we designed interfaces displaying the current speed and the speed limit of the road and used color-coded bars to depict whether drivers were speeding. To make the drivers aware of pedestrians and cyclists in the vicinity, we considered three interface designs: highlighting cyclists and pedestrians

3 Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting with bounding box or exclamation marks. Based on the contextual inquiry, we also felt the need to add a new feature for aiding navigation because a subset of novice international drivers was not familiar with the area. We gleaned lessons learned from the AR and other literature (Tönnis, Klinker, & Plavšic, 2009) to inform characteristics of our AR designs, for example, information density, shape, size and position, color, brightness and intensity; when used properly can help in enhancing the viewing experience. The amount of information to be shown at a given time and space, or information density, is an important design consideration while designing in a driving context and for non-expert drivers who may get distracted by too much information on the AR HUD. The information provided on the AR HUD should not distract the driver from driving or add to his/her cognitive load. The shape of the virtual road signs should embody metaphors to make their meaning more readily understandable across different cultures. For example, an arrow is often used to indicate direction and the diamond sign is used for road signs. The size and position of the road signs should not obstruct the driver s field of view. On the contrary, they should be strategically placed and scaled to direct the drivers attention to the correct real-world objects. Color is another important design aspect; and provides semantics that can be leveraged across cultures. For example, by most driving conventions, red generally means "stop" and green means "go". AR HUD designs for driving should leverage these or other metaphors. The colors chosen for the virtual road signs should provide enough luminance and chrominance contrast (with the background) to ensure high salience. Signs must be bright enough so that it is clearly visible to the driver, but not so bright that it causes the driver inconvenience. Intensity (or transparency) of the virtual road signs should not obstruct the driver s view of the environment. The timing of appearance of the virtual road sign is crucial in helping the driver take a timely decision. On the completion of the ideation and critiquing phases, we narrowed the design space down to four key features (Figure 3), keeping the design factors and characteristics of our persona in mind. The navigation aid is placed in the center of the AR HUD, at a height such that it does not obstruct the view of any other vehicles ahead. The sides of the AR HUD are used to display the road signs. The road sign appears on the left or right indicating the direction of an approaching pedestrian or cyclist. This helps direct the driver s attention to the relevant object. A Figure 1. Layout of the interface design 1752 cyan colored navigational arrow points in the direction of the driver s destination. The color of the road sign changes based on the urgency of the driver s reaction (i.e.: quickly if red, not so quickly if amber). The symbols used build on existing conventions in driving and other scenarios to elicit a decision and corresponding reaction. Audio feedback provides redundancy gain through multimodal instructions such as "Turn left", "Yield", or "Slow down" based on the situation,. The audio was designed to be a redundant and complimentary feature implemented to reinforce the AR visual cues. Video Prototyping Before prototyping design ideas, we considered the requirements for the prototype, such as level of fidelity, depth, and breadth. From the interaction perspective, drivers need to interact with the prototype while driving. From the ecological perspective, the driving scenario should be representative and realistic. From emotional perspective, drivers should not feel any actual threat for safe evaluation. Therefore, we decided to use medium-to-high fidelity prototypes for better validity of evaluation. Regarding the depth and breadth of the prototype, we decided to develop a horizontal prototype, where we implemented all the design features to effectively address the findings identified earlier in the design phase. To help with rapid prototyping and subsequent design iterations, we used a video editing tool to overlay computer generated graphics atop pre-recorded driving video footage (Figure 2). The actual driving scenario aimed to improve our prototype s ecologically validity. Combined with a highfidelity driving simulator, the augmented video footage served as an appropriate tool for formative evaluation. Participants manipulated the steering wheel, pedals, and turn signals of a real vehicle in response to events in the video to mimic the actions required when driving a real vehicle on the road. We provided a small crosshair in the driving scene (controlled by the steering wheel) and asked participants to keep the cross hair in the center of the lane when driving. The prototype helped in drawing the drivers attention to the existing signs on the road by displaying a virtual road instruction attached to the target road sign. This functionality was supported by audio feedback such as "Stop" for pedestrian crossings or Stop signs, "Turn Right/Left" for roundabouts. The prototype made the driver aware of the speed limits and if they are over speeding by displaying the current speed limit and the Figure 2. Simulation of an AR HUD by synthesizing computer graphics with pre-recorded driving video footage

4 Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting 1753 Finally, they performed a post-hoc evaluation of the interface that required them to predict the persona s performance, workload and identify any usability issues based either on heuristics or expertise. After their evaluation, we conducted a retrospective think aloud session, where we replayed the driving scenario using a desktop computer which afforded more time to review design factors of the AR interface design (i.e., information density, shape, size, position, color, brightness, transparency and timing). Experts filled out a matrix that relates predicted user performance and usability issues with any relevant design factors (Figure 4). Figure 3. Typical use-cases realized in the prototype speed limit on the road. Audio feedback was used to support this functionality with instructions such as "Slow down". The prototype informed the driver of a possible collision with an approaching cyclist or pedestrian by displaying a virtual road instruction attached to the target road sign. Audio feedback supported this functionality with instructions such as "Yield to Cyclist/Pedestrian" (Figure3). Usability Evaluation For the usability evaluation, a heuristic walkthrough (Sears, 1997) was conducted, where two usability experts evaluated the interface using the persona while driving a car in the high fidelity simulator and using our AR HUD interface. The heuristic walkthrough consisted of four sessions. First we introduced the overall process, our persona, a brief overview of the user interface and the heuristics. Second, the expert evaluators had a practice session to get used to the driving simulator. The experts were then shown a route plan (using Google Maps) that depicted the path of the pre-recorded driving scenario. Next, they drove the car while using (and evaluating) the AR HUD interface. The driving scenario included all the required use-cases that our AR interface intended to address: turning, merging, unfamiliar road signs, work zones, pedestrians, cyclists and even speeding situations. Figure 4. An evaluation sheet includes three main components (predicted user performance, usability issues and interface design factors) and mapping among components The stages of human information processing (Endsley, 2012) attention, sensation, situation awareness (perception, comprehension, projection) and decision - were integrated in our evaluation to help predict the driver s performance while using the AR HUD interface. The heuristics experts used included; the driver should be able to sense the information provided by the interface clearly; the information provided was relevant and sufficient to complete a particular task, and the information caught the driver s attention immediately without distracting or obstructing the driver s field of view; the information provided by the interface should help the driver perceive objects in the real world in a timely manner; the information provided should be easily to understand and should be able to predict changes in the environment; and the information should help the driver in making decisions and reduce the cognitive load of the driver. Experts evaluated the AR HUD interface by rating it against a non-ar HUD condition (i.e., without any AR driving aid) using a seven-point scale (Figure 5). RESULTS The heuristic evaluation performed by the usability experts compared driving using the virtual road sign AR HUD design against driving without any AR HUD aid. The experts expected the virtual road signs would help improve driver performance in the following areas: sensation (2.5), attention (2.5), perception (2.0), comprehension (2.5), projection (1.0), decision (1.5) and reduce workload (2.5). On the other hand, retrospective think aloud sessions revealed opportunities to improve the interface. Results from this session suggest that color and transparency of visual cues should be dynamically adjusted to outdoor background to increase sensation and Figure 5. A radar chart shows predicted user performance and workload as compared to the baseline (without an AR driving aid) performance: -3 strongly worse, 0 the same, +3 strongly better than the baseline

5 Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting 1754 perception. They also suggested that timing of the instructions (both visual and auditory) should be synchronized to increase projection and decision. DISCUSSION From the results obtained in the analytic evaluation and comments from the usability experts, we can infer that our interface may help novice international drivers understand the meaning of the road signs, increase awareness of speed limits, and help avoid cyclists and pedestrians. Our findings suggest that a well-designed AR HUD interface may marginally improve decision-making over having no interface. Virtual road signs can help increase situation awareness and reduce novice drivers workload when driving through unfamiliar areas with unfamiliar traffic rules. Conformal virtual signs and leader line designs can reduce the user s effort for visual search by directly indicating target objects, such as pedestrians and cyclists. Direct instructions in a given context can further reduce the driver s workload to react appropriately to the signs or situations encountered. The radar chart (Figure 5) compares the predicted performance of the participant against the baseline performance (without an AR driving aid). It also indicates that virtual road signs can increase the driver s situation awareness (perception, comprehension, and projection) as compared to the baseline. Conformal presentation of information can quickly guide a novice driver s attention to relevant environmental elements in a given driving context. Without our interface, our persona, who is new to the area, new to US traffic system, and new to driving, does not know where to focus his attention: he could focus on the road and the road signs; on the in-vehicle gauges; or on the navigation aid giving him directions. However, Figure 5 indicates that our interface can help him manage drivers attention. Further, the think aloud session with our experts revealed that highlighting only relevant road signs among many can help guide drivers attention to the most relevant stimuli in a given context. In sum, our AR HUD design shows strong promise to help drivers understand the meaning of road signs, be aware of the speed limit, using virtual road signs, and avoid cyclists and pedestrians. We believe these benefits are gained by the AR HUDs ability to direct drivers attention to relevant information, thereby reducing cognitive load, and in turn facilitating more effective decision making. Future work may involve improving the AR HUD design based on the results of the analytical evaluation presented herein. This would mean incorporating the changes suggested by the heuristic experts, such as implementing an adaptive UI that, for example, alters the color of navigation aid and virtual road signs based on the environment. The timing of the audio feedback (with respect to visual onset of virtual road signs) could also be improved. Also, a more detailed audio feedback content could be provided to include details such as the reason for asking the driver to slow down. Future designs should also address the challenges of attentional narrowing. Lastly, we aim to conduct an empirical user study to gather more quantitative and qualitative data. ACKNOWLEDGEMENTS We would like to thank Dr. Scott McCrickard for his advice during the work, as well as the expert evaluators for their time, effort and thoughts during the design walkthrough. REFERENCES Azuma, R. T. (1997). A survey of augmented reality. Presence, 6(4), Beyer, H., & Holtzblatt, K. (1997). Contextual design: defining customercentered systems: Elsevier. Charissis, V., & Papanastasiou, S. (2010). Human-machine collaboration through vehicle head up display interface. Cognition Technology & Work, 12(1), doi:doi /S Dissanayake, S., & Lu, J. J. (2001). TRAFFIC CONTROL DEVICE COMPREHENSION: Differences between Domestic and International Drivers in USA. IATSS research, 25(2), Endsley, M. R. (2012). Designing for situation awareness: An approach to user-centered design: CRC Press. Hartson, R., & Pyla, P. S. (2012). The UX book: process and guidelines for ensuring a quality user experience: Elsevier. Kim, H., Miranda Anon, A., Misu, T., Li, N., Tawari, A., & Fujimura, K. (2016). Look at Me: Augmented Reality Pedestrian Warning System Using an In-Vehicle Volumetric Head Up Display. Paper presented at the Proceedings of the 21st International Conference on Intelligent User Interfaces. Kim, H., Wu, X., Gabbard, J. L., & Polys, N. F. (2013). Exploring head-up augmented reality interfaces for crash warning systems. Paper presented at the Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Rickesh, T., & Naveen Vignesh, B. (2011). Augmented reality solution to the blind spot issue while driving vehicles. Paper presented at the Recent Advances in Intelligent Computational Systems (RAICS), 2011 IEEE. Sears, A. (1997). Heuristic walkthroughs: Finding the problems without the noise. International Journal of Human-Computer Interaction, 9(3), Tönnis, M., Klinker, G., & Plavšic, M. (2009). Survey and Classification of Head-Up Display Presentation Principles. Proceedings of the International Ergonomics Association (IEA). Underwood, G. (2007). Visual attention and the transition from novice to advanced driver. Ergonomics, 50(8), doi: / Wai-Tat, F., Gasper, J., & Seong-Whan, K. (2013, 1-4 Oct. 2013). Effects of an in-car augmented reality system on improving safety of younger and older drivers. Paper presented at the Mixed and Augmented Reality (ISMAR), 2013 IEEE International Symposium on. Yasuda, H., & Ohama, Y. (2012, 5-8 Nov. 2012). Toward a practical wall see-through system for drivers: How simple can it be? Paper presented at the Mixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium on. Young, K. L., Lenné, M. G., Beanland, V., Salmon, P. M., & Stanton, N. A. (2015). Where do novice and experienced drivers direct their attention on approach to urban rail level crossings? Accident Analysis & Prevention, 77, 1-11.

Virtual Shadow: Making Cross Traffic Dynamics Visible through Augmented Reality Head Up Display

Virtual Shadow: Making Cross Traffic Dynamics Visible through Augmented Reality Head Up Display Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting 2093 Virtual Shadow: Making Cross Traffic Dynamics Visible through Augmented Reality Head Up Display Hyungil Kim, Jessica D.

More information

Virtual Shadow: Making Cross Traffic Dynamics Visible through Augmented Reality Head Up Display

Virtual Shadow: Making Cross Traffic Dynamics Visible through Augmented Reality Head Up Display Virtual Shadow: Making Cross Traffic Dynamics Visible through Augmented Reality Head Up Display Hyungil Kim Department of Industrial and Systems Engineering, Virginia Tech. Objective: This work aims to

More information

R.I.T. Design Thinking. Synthesize and combine new ideas to create the design. Selected material from The UX Book, Hartson & Pyla

R.I.T. Design Thinking. Synthesize and combine new ideas to create the design. Selected material from The UX Book, Hartson & Pyla Design Thinking Synthesize and combine new ideas to create the design Selected material from The UX Book, Hartson & Pyla S. Ludi/R. Kuehl p. 1 S. Ludi/R. Kuehl p. 2 Contextual Inquiry Raw data from interviews

More information

CS 350 COMPUTER/HUMAN INTERACTION

CS 350 COMPUTER/HUMAN INTERACTION CS 350 COMPUTER/HUMAN INTERACTION Lecture 23 Includes selected slides from the companion website for Hartson & Pyla, The UX Book, 2012. MKP, All rights reserved. Used with permission. Notes Swapping project

More information

Selecting Photos for Sharing

Selecting Photos for Sharing MHCI Team Ben Elgart Saara Kamppari Bridget Lewis Ajay Prasad Yong Woo Rhee Lalatendu Satpathy Microsoft Live Labs Steven Drucker Selecting Photos for Sharing Client-Sponsored MHCI Capstone Project Ben

More information

Driver Education Classroom and In-Car Curriculum Unit 3 Space Management System

Driver Education Classroom and In-Car Curriculum Unit 3 Space Management System Driver Education Classroom and In-Car Curriculum Unit 3 Space Management System Driver Education Classroom and In-Car Instruction Unit 3-2 Unit Introduction Unit 3 will introduce operator procedural and

More information

Early Take-Over Preparation in Stereoscopic 3D

Early Take-Over Preparation in Stereoscopic 3D Adjunct Proceedings of the 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 18), September 23 25, 2018, Toronto, Canada. Early Take-Over

More information

Optical See-Through Head Up Displays Effect on Depth Judgments of Real World Objects

Optical See-Through Head Up Displays Effect on Depth Judgments of Real World Objects Optical See-Through Head Up Displays Effect on Depth Judgments of Real World Objects Missie Smith 1 Nadejda Doutcheva 2 Joseph L. Gabbard 3 Gary Burnett 4 Human Factors Research Group University of Nottingham

More information

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Interaction in Virtual and Augmented Reality 3DUIs

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Interaction in Virtual and Augmented Reality 3DUIs Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Interaction in Virtual and Augmented Reality 3DUIs Realidade Virtual e Aumentada 2017/2018 Beatriz Sousa Santos Interaction

More information

EFFECTS OF A NIGHT VISION ENHANCEMENT SYSTEM (NVES) ON DRIVING: RESULTS FROM A SIMULATOR STUDY

EFFECTS OF A NIGHT VISION ENHANCEMENT SYSTEM (NVES) ON DRIVING: RESULTS FROM A SIMULATOR STUDY EFFECTS OF A NIGHT VISION ENHANCEMENT SYSTEM (NVES) ON DRIVING: RESULTS FROM A SIMULATOR STUDY Erik Hollnagel CSELAB, Department of Computer and Information Science University of Linköping, SE-58183 Linköping,

More information

THE EFFECTS OF PC-BASED TRAINING ON NOVICE DRIVERS RISK AWARENESS IN A DRIVING SIMULATOR

THE EFFECTS OF PC-BASED TRAINING ON NOVICE DRIVERS RISK AWARENESS IN A DRIVING SIMULATOR THE EFFECTS OF PC-BASED TRAINING ON NOVICE DRIVERS RISK AWARENESS IN A DRIVING SIMULATOR Anuj K. Pradhan 1, Donald L. Fisher 1, Alexander Pollatsek 2 1 Department of Mechanical and Industrial Engineering

More information

The Design and Assessment of Attention-Getting Rear Brake Light Signals

The Design and Assessment of Attention-Getting Rear Brake Light Signals University of Iowa Iowa Research Online Driving Assessment Conference 2009 Driving Assessment Conference Jun 25th, 12:00 AM The Design and Assessment of Attention-Getting Rear Brake Light Signals M Lucas

More information

Mobile Audio Designs Monkey: A Tool for Audio Augmented Reality

Mobile Audio Designs Monkey: A Tool for Audio Augmented Reality Mobile Audio Designs Monkey: A Tool for Audio Augmented Reality Bruce N. Walker and Kevin Stamper Sonification Lab, School of Psychology Georgia Institute of Technology 654 Cherry Street, Atlanta, GA,

More information

Steering a Driving Simulator Using the Queueing Network-Model Human Processor (QN-MHP)

Steering a Driving Simulator Using the Queueing Network-Model Human Processor (QN-MHP) University of Iowa Iowa Research Online Driving Assessment Conference 2003 Driving Assessment Conference Jul 22nd, 12:00 AM Steering a Driving Simulator Using the Queueing Network-Model Human Processor

More information

HUMAN-MACHINE COLLABORATION THROUGH VEHICLE HEAD UP DISPLAY INTERFACE

HUMAN-MACHINE COLLABORATION THROUGH VEHICLE HEAD UP DISPLAY INTERFACE HUMAN-MACHINE COLLABORATION THROUGH VEHICLE HEAD UP DISPLAY INTERFACE 1 V. Charissis, 2 S. Papanastasiou, 1 P. Anderson 1 Digital Design Studio, Glasgow School of Art, 10 Dumbreck road, G41 5BW, Glasgow,

More information

Iowa Research Online. University of Iowa. Robert E. Llaneras Virginia Tech Transportation Institute, Blacksburg. Jul 11th, 12:00 AM

Iowa Research Online. University of Iowa. Robert E. Llaneras Virginia Tech Transportation Institute, Blacksburg. Jul 11th, 12:00 AM University of Iowa Iowa Research Online Driving Assessment Conference 2007 Driving Assessment Conference Jul 11th, 12:00 AM Safety Related Misconceptions and Self-Reported BehavioralAdaptations Associated

More information

Human-Centered Design. Ashley Karr, UX Principal

Human-Centered Design. Ashley Karr, UX Principal Human-Centered Design Ashley Karr, UX Principal Agenda 05 minutes Stories 10 minutes Definitions 05 minutes History 05 minutes Smartsheet s UX Process 30 minutes Learn by Doing Stories How does technology

More information

Effective Iconography....convey ideas without words; attract attention...

Effective Iconography....convey ideas without words; attract attention... Effective Iconography...convey ideas without words; attract attention... Visual Thinking and Icons An icon is an image, picture, or symbol representing a concept Icon-specific guidelines Represent the

More information

Study of Effectiveness of Collision Avoidance Technology

Study of Effectiveness of Collision Avoidance Technology Study of Effectiveness of Collision Avoidance Technology How drivers react and feel when using aftermarket collision avoidance technologies Executive Summary Newer vehicles, including commercial vehicles,

More information

Definition, Effects and Nature of Distracted Driving Worksheet 9.1

Definition, Effects and Nature of Distracted Driving Worksheet 9.1 Definition, Effects and Nature of Distracted Driving Worksheet 9.1 Am I Distracted? Self-Assessment Quiz Take this quiz from the National Road Safety Foundation to determine if you or someone you know

More information

Real-time Information Management System Final Report August 8, 2003

Real-time Information Management System Final Report August 8, 2003 Real-time Information Management System Final Report August 8, 2003 Heather Frantz Albert Lo Elizabeth Mauer Jessica Mignone Kathryn Rieger Table of Contents Chapters Page 1. Executive Summary... 1 2.

More information

Human Factors Evaluation of Existing Side Collision Avoidance System Driver Interfaces

Human Factors Evaluation of Existing Side Collision Avoidance System Driver Interfaces 952659 Human Factors Evaluation of Existing Side Collision Avoidance System Driver Interfaces Elizabeth N. Mazzae Transportation Research Center Inc. W. Riley Garrott, Mark A. Flick National Highway Traffic

More information

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS BY SERAFIN BENTO MASTER OF SCIENCE in INFORMATION SYSTEMS Edmonton, Alberta September, 2015 ABSTRACT The popularity of software agents demands for more comprehensive HAI design processes. The outcome of

More information

preface Motivation Figure 1. Reality-virtuality continuum (Milgram & Kishino, 1994) Mixed.Reality Augmented. Virtuality Real...

preface Motivation Figure 1. Reality-virtuality continuum (Milgram & Kishino, 1994) Mixed.Reality Augmented. Virtuality Real... v preface Motivation Augmented reality (AR) research aims to develop technologies that allow the real-time fusion of computer-generated digital content with the real world. Unlike virtual reality (VR)

More information

Revision of the EU General Safety Regulation and Pedestrian Safety Regulation

Revision of the EU General Safety Regulation and Pedestrian Safety Regulation AC.nl Revision of the EU General Safety Regulation and Pedestrian Safety Regulation 11 September 2018 ETSC isafer Fitting safety as standard Directorate-General for Internal Market, Automotive and Mobility

More information

A Matter of Trust: white paper. How Smart Design Can Accelerate Automated Vehicle Adoption. Authors Jack Weast Matt Yurdana Adam Jordan

A Matter of Trust: white paper. How Smart Design Can Accelerate Automated Vehicle Adoption. Authors Jack Weast Matt Yurdana Adam Jordan white paper A Matter of Trust: How Smart Design Can Accelerate Automated Vehicle Adoption Authors Jack Weast Matt Yurdana Adam Jordan Executive Summary To Win Consumers, First Earn Trust It s an exciting

More information

23270: AUGMENTED REALITY FOR NAVIGATION AND INFORMATIONAL ADAS. Sergii Bykov Technical Lead Machine Learning 12 Oct 2017

23270: AUGMENTED REALITY FOR NAVIGATION AND INFORMATIONAL ADAS. Sergii Bykov Technical Lead Machine Learning 12 Oct 2017 23270: AUGMENTED REALITY FOR NAVIGATION AND INFORMATIONAL ADAS Sergii Bykov Technical Lead Machine Learning 12 Oct 2017 Product Vision Company Introduction Apostera GmbH with headquarter in Munich, was

More information

Current Technologies in Vehicular Communications

Current Technologies in Vehicular Communications Current Technologies in Vehicular Communications George Dimitrakopoulos George Bravos Current Technologies in Vehicular Communications George Dimitrakopoulos Department of Informatics and Telematics Harokopio

More information

Understanding User s Experiences: Evaluation of Digital Libraries. Ann Blandford University College London

Understanding User s Experiences: Evaluation of Digital Libraries. Ann Blandford University College London Understanding User s Experiences: Evaluation of Digital Libraries Ann Blandford University College London Overview Background Some desiderata for DLs Some approaches to evaluation Quantitative Qualitative

More information

Work Domain Analysis (WDA) for Ecological Interface Design (EID) of Vehicle Control Display

Work Domain Analysis (WDA) for Ecological Interface Design (EID) of Vehicle Control Display Work Domain Analysis (WDA) for Ecological Interface Design (EID) of Vehicle Control Display SUK WON LEE, TAEK SU NAM, ROHAE MYUNG Division of Information Management Engineering Korea University 5-Ga, Anam-Dong,

More information

Trust in Automated Vehicles

Trust in Automated Vehicles Trust in Automated Vehicles Fredrick Ekman and Mikael Johansson ekmanfr@chalmers.se, johamik@chalmers.se Design & Human Factors, Chalmers Adoption and use of technical systems users needs and requirements

More information

Perspective of Reality

Perspective of Reality Perspective of Reality [1] Ch. Aishwarya, [2] R. Sai Sravya, [3] P. Siva Parvathi [1][2][3] Department of Computer Science and Engineering. G. Narayanamma Institute of Science and Technology (for Women)

More information

SAfety VEhicles using adaptive Interface Technology (SAVE-IT): A Program Overview

SAfety VEhicles using adaptive Interface Technology (SAVE-IT): A Program Overview SAfety VEhicles using adaptive Interface Technology (SAVE-IT): A Program Overview SAVE-IT David W. Eby,, PhD University of Michigan Transportation Research Institute International Distracted Driving Conference

More information

Integrated Driving Aware System in the Real-World: Sensing, Computing and Feedback

Integrated Driving Aware System in the Real-World: Sensing, Computing and Feedback Integrated Driving Aware System in the Real-World: Sensing, Computing and Feedback Jung Wook Park HCI Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA, USA, 15213 jungwoop@andrew.cmu.edu

More information

MOBILITY RESEARCH NEEDS FROM THE GOVERNMENT PERSPECTIVE

MOBILITY RESEARCH NEEDS FROM THE GOVERNMENT PERSPECTIVE MOBILITY RESEARCH NEEDS FROM THE GOVERNMENT PERSPECTIVE First Annual 2018 National Mobility Summit of US DOT University Transportation Centers (UTC) April 12, 2018 Washington, DC Research Areas Cooperative

More information

The application of Work Domain Analysis (WDA) for the development of vehicle control display

The application of Work Domain Analysis (WDA) for the development of vehicle control display Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 160 The application of Work Domain Analysis (WDA) for the development

More information

Conceptual Metaphors for Explaining Search Engines

Conceptual Metaphors for Explaining Search Engines Conceptual Metaphors for Explaining Search Engines David G. Hendry and Efthimis N. Efthimiadis Information School University of Washington, Seattle, WA 98195 {dhendry, efthimis}@u.washington.edu ABSTRACT

More information

AutoHabLab Addressing Design Challenges in Automotive UX. Prof. Joseph Giacomin September 4 th 2018

AutoHabLab Addressing Design Challenges in Automotive UX. Prof. Joseph Giacomin September 4 th 2018 AutoHabLab Addressing Design Challenges in Automotive UX Prof. Joseph Giacomin September 4 th 2018 Human Centred Design Human Centred Design Involves techniques which empathise with, interact with, and

More information

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION 4 & 5 SEPTEMBER 2008, UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA, SPAIN MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL

More information

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Helmut Schrom-Feiertag 1, Christoph Schinko 2, Volker Settgast 3, and Stefan Seer 1 1 Austrian

More information

Augmented Reality as an Advanced Driver-Assistance System: A Cognitive Approach

Augmented Reality as an Advanced Driver-Assistance System: A Cognitive Approach Proceedings of the 6 th Humanist Conference, The Hague, Netherlands, 13-14 June 2018 Augmented Reality as an Advanced Driver-Assistance System: A Cognitive Approach Lucas Morillo Méndez, CTAG, Spain, l.morillo.lm@gmail.com,

More information

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: Lijun Jiang et al 2018 J. Phys.: Conf. Ser.

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: Lijun Jiang et al 2018 J. Phys.: Conf. Ser. Journal of Physics: Conference Series PAPER OPEN ACCESS The Development of A Potential Head-Up Display Interface Graphic Visual Design Framework for Driving Safety by Consuming Less Cognitive Resource

More information

ASSESSMENT OF A DRIVER INTERFACE FOR LATERAL DRIFT AND CURVE SPEED WARNING SYSTEMS: MIXED RESULTS FOR AUDITORY AND HAPTIC WARNINGS

ASSESSMENT OF A DRIVER INTERFACE FOR LATERAL DRIFT AND CURVE SPEED WARNING SYSTEMS: MIXED RESULTS FOR AUDITORY AND HAPTIC WARNINGS ASSESSMENT OF A DRIVER INTERFACE FOR LATERAL DRIFT AND CURVE SPEED WARNING SYSTEMS: MIXED RESULTS FOR AUDITORY AND HAPTIC WARNINGS Tina Brunetti Sayer Visteon Corporation Van Buren Township, Michigan,

More information

Issues and Challenges of 3D User Interfaces: Effects of Distraction

Issues and Challenges of 3D User Interfaces: Effects of Distraction Issues and Challenges of 3D User Interfaces: Effects of Distraction Leslie Klein kleinl@in.tum.de In time critical tasks like when driving a car or in emergency management, 3D user interfaces provide an

More information

Chapter 6 Experiments

Chapter 6 Experiments 72 Chapter 6 Experiments The chapter reports on a series of simulations experiments showing how behavior and environment influence each other, from local interactions between individuals and other elements

More information

MODULE 10: INTELLIGENT TRANSPORTATION SYSTEMS: SMART WORK ZONES LESSON 1: WORK ZONE SAFETY

MODULE 10: INTELLIGENT TRANSPORTATION SYSTEMS: SMART WORK ZONES LESSON 1: WORK ZONE SAFETY MODULE 10: INTELLIGENT TRANSPORTATION SYSTEMS: SMART WORK ZONES LESSON 1: WORK ZONE SAFETY Connected vehicle (CV) safety applications are designed to increase awareness of what is happening in the environment

More information

An Integrated Approach Towards the Construction of an HCI Methodological Framework

An Integrated Approach Towards the Construction of an HCI Methodological Framework An Integrated Approach Towards the Construction of an HCI Methodological Framework Tasos Spiliotopoulos Department of Mathematics & Engineering University of Madeira 9000-390 Funchal, Portugal tasos@m-iti.org

More information

AUGMENTED REALITY IN URBAN MOBILITY

AUGMENTED REALITY IN URBAN MOBILITY AUGMENTED REALITY IN URBAN MOBILITY 11 May 2016 Normal: Prepared by TABLE OF CONTENTS TABLE OF CONTENTS... 1 1. Overview... 2 2. What is Augmented Reality?... 2 3. Benefits of AR... 2 4. AR in Urban Mobility...

More information

HandsIn3D: Supporting Remote Guidance with Immersive Virtual Environments

HandsIn3D: Supporting Remote Guidance with Immersive Virtual Environments HandsIn3D: Supporting Remote Guidance with Immersive Virtual Environments Weidong Huang 1, Leila Alem 1, and Franco Tecchia 2 1 CSIRO, Australia 2 PERCRO - Scuola Superiore Sant Anna, Italy {Tony.Huang,Leila.Alem}@csiro.au,

More information

Beyond Actuated Tangibles: Introducing Robots to Interactive Tabletops

Beyond Actuated Tangibles: Introducing Robots to Interactive Tabletops Beyond Actuated Tangibles: Introducing Robots to Interactive Tabletops Sowmya Somanath Department of Computer Science, University of Calgary, Canada. ssomanat@ucalgary.ca Ehud Sharlin Department of Computer

More information

Admin. Today: Designing for Virtual Reality VR and 3D interfaces Interaction design for VR Prototyping for VR

Admin. Today: Designing for Virtual Reality VR and 3D interfaces Interaction design for VR Prototyping for VR HCI and Design Admin Reminder: Assignment 4 Due Thursday before class Questions? Today: Designing for Virtual Reality VR and 3D interfaces Interaction design for VR Prototyping for VR 3D Interfaces We

More information

Evaluation based on drivers' needs analysis

Evaluation based on drivers' needs analysis Evaluation based on drivers' needs analysis Pierre Van Elslande (IFSTTAR) DaCoTA EU Conference On Road Safety data and knowledge-based Policy-making Athens, 22 23 November 2012 Project co-financed by the

More information

Analyzing Situation Awareness During Wayfinding in a Driving Simulator

Analyzing Situation Awareness During Wayfinding in a Driving Simulator In D.J. Garland and M.R. Endsley (Eds.) Experimental Analysis and Measurement of Situation Awareness. Proceedings of the International Conference on Experimental Analysis and Measurement of Situation Awareness.

More information

HELPING THE DESIGN OF MIXED SYSTEMS

HELPING THE DESIGN OF MIXED SYSTEMS HELPING THE DESIGN OF MIXED SYSTEMS Céline Coutrix Grenoble Informatics Laboratory (LIG) University of Grenoble 1, France Abstract Several interaction paradigms are considered in pervasive computing environments.

More information

Design and prototyping. CS4784: HCI Capstone Virginia Tech Instructor: Dr. Kurt Luther

Design and prototyping. CS4784: HCI Capstone Virginia Tech Instructor: Dr. Kurt Luther Design and prototyping CS4784: HCI Capstone Virginia Tech Instructor: Dr. Kurt Luther Preview Chapter 7 of UX Book Ideation Personas Brainstorming Sketching Prototyping Mockups 1 Ideation Active, fast-moving

More information

Mixed Reality technology applied research on railway sector

Mixed Reality technology applied research on railway sector Mixed Reality technology applied research on railway sector Yong-Soo Song, Train Control Communication Lab, Korea Railroad Research Institute Uiwang si, Korea e-mail: adair@krri.re.kr Jong-Hyun Back, Train

More information

Human Factors: Unknowns, Knowns and the Forgotten

Human Factors: Unknowns, Knowns and the Forgotten Human Factors: Unknowns, Knowns and the Forgotten Peter C. Burns Standards Research & Development, Motor Vehicle Safety Transport Canada 2018 SIP-adus Workshop: Human Factors 1 Outline Examples of bad

More information

Spatial Interfaces and Interactive 3D Environments for Immersive Musical Performances

Spatial Interfaces and Interactive 3D Environments for Immersive Musical Performances Spatial Interfaces and Interactive 3D Environments for Immersive Musical Performances Florent Berthaut and Martin Hachet Figure 1: A musician plays the Drile instrument while being immersed in front of

More information

Racenet - Sports Gambling. Multi Maxa - MVP app built from scratch

Racenet - Sports Gambling. Multi Maxa - MVP app built from scratch Racenet - Sports Gambling Multi Maxa - MVP app built from scratch What is the problem & Why is it important? Overview: Racenet is Australia s most trusted racing Main concern: New gambling legislation

More information

Bridging the Gap: Moving from Contextual Analysis to Design CHI 2010 Workshop Proposal

Bridging the Gap: Moving from Contextual Analysis to Design CHI 2010 Workshop Proposal Bridging the Gap: Moving from Contextual Analysis to Design CHI 2010 Workshop Proposal Contact person: Tejinder Judge, PhD Candidate Center for Human-Computer Interaction, Virginia Tech tkjudge@vt.edu

More information

Evaluation of Connected Vehicle Technology for Concept Proposal Using V2X Testbed

Evaluation of Connected Vehicle Technology for Concept Proposal Using V2X Testbed AUTOMOTIVE Evaluation of Connected Vehicle Technology for Concept Proposal Using V2X Testbed Yoshiaki HAYASHI*, Izumi MEMEZAWA, Takuji KANTOU, Shingo OHASHI, and Koichi TAKAYAMA ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Situational Awareness A Missing DP Sensor output

Situational Awareness A Missing DP Sensor output Situational Awareness A Missing DP Sensor output Improving Situational Awareness in Dynamically Positioned Operations Dave Sanderson, Engineering Group Manager. Abstract Guidance Marine is at the forefront

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Karvonen, Hannu; Kujala, Tuomo Title: Designing and Evaluating

More information

School of Computer Science. Course Title: Introduction to Human-Computer Interaction Date: 8/16/11

School of Computer Science. Course Title: Introduction to Human-Computer Interaction Date: 8/16/11 Course Title: Introduction to Human-Computer Interaction Date: 8/16/11 Course Number: CEN-371 Number of Credits: 3 Subject Area: Computer Systems Subject Area Coordinator: Christine Lisetti email: lisetti@cis.fiu.edu

More information

S.4 Cab & Controls Information Report:

S.4 Cab & Controls Information Report: Issued: May 2009 S.4 Cab & Controls Information Report: 2009-1 Assessing Distraction Risks of Driver Interfaces Developed by the Technology & Maintenance Council s (TMC) Driver Distraction Assessment Task

More information

Designing the sound experience with NVH simulation

Designing the sound experience with NVH simulation White Paper Designing the sound experience with NVH simulation Roger Williams 1, Mark Allman-Ward 1, Peter Sims 1 1 Brüel & Kjær Sound & Vibration Measurement A/S, Denmark Abstract Creating the perfect

More information

Human Autonomous Vehicles Interactions: An Interdisciplinary Approach

Human Autonomous Vehicles Interactions: An Interdisciplinary Approach Human Autonomous Vehicles Interactions: An Interdisciplinary Approach X. Jessie Yang xijyang@umich.edu Dawn Tilbury tilbury@umich.edu Anuj K. Pradhan Transportation Research Institute anujkp@umich.edu

More information

Proposed Watertown Plan Road Interchange Evaluation Using Full Scale Driving Simulator

Proposed Watertown Plan Road Interchange Evaluation Using Full Scale Driving Simulator 0 0 0 0 Proposed Watertown Plan Road Interchange Evaluation Using Full Scale Driving Simulator Kelvin R. Santiago-Chaparro*, M.S., P.E. Assistant Researcher Traffic Operations and Safety (TOPS) Laboratory

More information

The Perception of Optical Flow in Driving Simulators

The Perception of Optical Flow in Driving Simulators University of Iowa Iowa Research Online Driving Assessment Conference 2009 Driving Assessment Conference Jun 23rd, 12:00 AM The Perception of Optical Flow in Driving Simulators Zhishuai Yin Northeastern

More information

Design Process. ERGONOMICS in. the Automotive. Vivek D. Bhise. CRC Press. Taylor & Francis Group. Taylor & Francis Group, an informa business

Design Process. ERGONOMICS in. the Automotive. Vivek D. Bhise. CRC Press. Taylor & Francis Group. Taylor & Francis Group, an informa business ERGONOMICS in the Automotive Design Process Vivek D. Bhise CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Contents

More information

Contextual Design and Innovations in Automotive HMI Andrew W. Gellatly, Ph.D.

Contextual Design and Innovations in Automotive HMI Andrew W. Gellatly, Ph.D. Contextual Design and Innovations in Automotive HMI Andrew W. Gellatly, Ph.D. International Advanced School on Automotive Software Engineering Conference Software Engineering for Automotive Innovation

More information

Designing A Human Vehicle Interface For An Intelligent Community Vehicle

Designing A Human Vehicle Interface For An Intelligent Community Vehicle Designing A Human Vehicle Interface For An Intelligent Community Vehicle Kin Kok Lee, Yong Tsui Lee and Ming Xie School of Mechanical & Production Engineering Nanyang Technological University Nanyang Avenue

More information

Image Characteristics and Their Effect on Driving Simulator Validity

Image Characteristics and Their Effect on Driving Simulator Validity University of Iowa Iowa Research Online Driving Assessment Conference 2001 Driving Assessment Conference Aug 16th, 12:00 AM Image Characteristics and Their Effect on Driving Simulator Validity Hamish Jamson

More information

Using VR and simulation to enable agile processes for safety-critical environments

Using VR and simulation to enable agile processes for safety-critical environments Using VR and simulation to enable agile processes for safety-critical environments Michael N. Louka Department Head, VR & AR IFE Digital Systems Virtual Reality Virtual Reality: A computer system used

More information

Human Factors Studies for Limited- Ability Autonomous Driving Systems (LAADS)

Human Factors Studies for Limited- Ability Autonomous Driving Systems (LAADS) Human Factors Studies for Limited- Ability Autonomous Driving Systems (LAADS) Glenn Widmann; Delphi Automotive Systems Jeremy Salinger; General Motors Robert Dufour; Delphi Automotive Systems Charles Green;

More information

Future Personas Experience the Customer of the Future

Future Personas Experience the Customer of the Future Future Personas Experience the Customer of the Future By Andreas Neef and Andreas Schaich CONTENTS 1 / Introduction 03 2 / New Perspectives: Submerging Oneself in the Customer's World 03 3 / Future Personas:

More information

CS 315 Intro to Human Computer Interaction (HCI)

CS 315 Intro to Human Computer Interaction (HCI) CS 315 Intro to Human Computer Interaction (HCI) Direct Manipulation Examples Drive a car If you want to turn left, what do you do? What type of feedback do you get? How does this help? Think about turning

More information

Sign Legibility Rules Of Thumb

Sign Legibility Rules Of Thumb Sign Legibility Rules Of Thumb UNITED STATES SIGN COUNCIL 2006 United States Sign Council SIGN LEGIBILITY By Andrew Bertucci, United States Sign Council Since 1996, the United States Sign Council (USSC)

More information

Access Invaders: Developing a Universally Accessible Action Game

Access Invaders: Developing a Universally Accessible Action Game ICCHP 2006 Thursday, 13 July 2006 Access Invaders: Developing a Universally Accessible Action Game Dimitris Grammenos, Anthony Savidis, Yannis Georgalis, Constantine Stephanidis Human-Computer Interaction

More information

Introduction to HCI. CS4HC3 / SE4HC3/ SE6DO3 Fall Instructor: Kevin Browne

Introduction to HCI. CS4HC3 / SE4HC3/ SE6DO3 Fall Instructor: Kevin Browne Introduction to HCI CS4HC3 / SE4HC3/ SE6DO3 Fall 2011 Instructor: Kevin Browne brownek@mcmaster.ca Slide content is based heavily on Chapter 1 of the textbook: Designing the User Interface: Strategies

More information

Driving Simulation Scenario Definition Based on Performance Measures

Driving Simulation Scenario Definition Based on Performance Measures Driving Simulation Scenario Definition Based on Performance Measures Yiannis Papelis Omar Ahmad Ginger Watson NADS & Simulation Center The University of Iowa 2401 Oakdale Blvd. Iowa City, IA 52242-5003

More information

TRAFFIC SIGN DETECTION AND IDENTIFICATION.

TRAFFIC SIGN DETECTION AND IDENTIFICATION. TRAFFIC SIGN DETECTION AND IDENTIFICATION Vaughan W. Inman 1 & Brian H. Philips 2 1 SAIC, McLean, Virginia, USA 2 Federal Highway Administration, McLean, Virginia, USA Email: vaughan.inman.ctr@dot.gov

More information

THE SCHOOL BUS. Figure 1

THE SCHOOL BUS. Figure 1 THE SCHOOL BUS Federal Motor Vehicle Safety Standards (FMVSS) 571.111 Standard 111 provides the requirements for rear view mirror systems for road vehicles, including the school bus in the US. The Standards

More information

Perceptual Characters of Photorealistic See-through Vision in Handheld Augmented Reality

Perceptual Characters of Photorealistic See-through Vision in Handheld Augmented Reality Perceptual Characters of Photorealistic See-through Vision in Handheld Augmented Reality Arindam Dey PhD Student Magic Vision Lab University of South Australia Supervised by: Dr Christian Sandor and Prof.

More information

The Impact of Road Familiarity on the Perception of Traffic Signs Eye Tracking Case Study

The Impact of Road Familiarity on the Perception of Traffic Signs Eye Tracking Case Study Environmental Engineering 10th International Conference eissn 2029-7092 / eisbn 978-609-476-044-0 Vilnius Gediminas Technical University Lithuania, 27 28 April 2017 Article ID: enviro.2017.131 http://enviro.vgtu.lt

More information

Interactions and Applications for See- Through interfaces: Industrial application examples

Interactions and Applications for See- Through interfaces: Industrial application examples Interactions and Applications for See- Through interfaces: Industrial application examples Markus Wallmyr Maximatecc Fyrisborgsgatan 4 754 50 Uppsala, SWEDEN Markus.wallmyr@maximatecc.com Abstract Could

More information

TANGIBLE IDEATION: HOW DIGITAL FABRICATION ACTS AS A CATALYST IN THE EARLY STEPS OF PRODUCT DEVELOPMENT

TANGIBLE IDEATION: HOW DIGITAL FABRICATION ACTS AS A CATALYST IN THE EARLY STEPS OF PRODUCT DEVELOPMENT INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION 5 & 6 SEPTEMBER 2013, DUBLIN INSTITUTE OF TECHNOLOGY, DUBLIN, IRELAND TANGIBLE IDEATION: HOW DIGITAL FABRICATION ACTS AS A CATALYST

More information

Below is provided a chapter summary of the dissertation that lays out the topics under discussion.

Below is provided a chapter summary of the dissertation that lays out the topics under discussion. Introduction This dissertation articulates an opportunity presented to architecture by computation, specifically its digital simulation of space known as Virtual Reality (VR) and its networked, social

More information

Industrial Keynotes. 06/09/2018 Juan-Les-Pins

Industrial Keynotes. 06/09/2018 Juan-Les-Pins Industrial Keynotes 1 06/09/2018 Juan-Les-Pins Agenda 1. The End of Driving Simulation? 2. Autonomous Vehicles: the new UI 3. Augmented Realities 4. Choose your factions 5. No genuine AI without flawless

More information

Findings of a User Study of Automatically Generated Personas

Findings of a User Study of Automatically Generated Personas Findings of a User Study of Automatically Generated Personas Joni Salminen Qatar Computing Research Institute, Hamad Bin Khalifa University and Turku School of Economics jsalminen@hbku.edu.qa Soon-Gyo

More information

AR 2 kanoid: Augmented Reality ARkanoid

AR 2 kanoid: Augmented Reality ARkanoid AR 2 kanoid: Augmented Reality ARkanoid B. Smith and R. Gosine C-CORE and Memorial University of Newfoundland Abstract AR 2 kanoid, Augmented Reality ARkanoid, is an augmented reality version of the popular

More information

Stanford Center for AI Safety

Stanford Center for AI Safety Stanford Center for AI Safety Clark Barrett, David L. Dill, Mykel J. Kochenderfer, Dorsa Sadigh 1 Introduction Software-based systems play important roles in many areas of modern life, including manufacturing,

More information

Scholarly Article Review. The Potential of Using Virtual Reality Technology in Physical Activity Settings. Aaron Krieger.

Scholarly Article Review. The Potential of Using Virtual Reality Technology in Physical Activity Settings. Aaron Krieger. Scholarly Article Review The Potential of Using Virtual Reality Technology in Physical Activity Settings Aaron Krieger October 22, 2015 The Potential of Using Virtual Reality Technology in Physical Activity

More information

Multi-Modality Fidelity in a Fixed-Base- Fully Interactive Driving Simulator

Multi-Modality Fidelity in a Fixed-Base- Fully Interactive Driving Simulator Multi-Modality Fidelity in a Fixed-Base- Fully Interactive Driving Simulator Daniel M. Dulaski 1 and David A. Noyce 2 1. University of Massachusetts Amherst 219 Marston Hall Amherst, Massachusetts 01003

More information

Intelligent Technology for More Advanced Autonomous Driving

Intelligent Technology for More Advanced Autonomous Driving FEATURED ARTICLES Autonomous Driving Technology for Connected Cars Intelligent Technology for More Advanced Autonomous Driving Autonomous driving is recognized as an important technology for dealing with

More information

The Automated Psychophysical Test (APT) for assessing age-diminished capabilities

The Automated Psychophysical Test (APT) for assessing age-diminished capabilities Behavior Research Methods, Instruments, & Computers /994, 26 (2), /87-/9/ The Automated Psychophysical Test (APT) for assessing age-diminished capabilities A. SCOTI' McKNIGHT and A. JAMES McKNIGHT National

More information

Multisensory virtual environment for supporting blind persons acquisition of spatial cognitive mapping, orientation, and mobility skills

Multisensory virtual environment for supporting blind persons acquisition of spatial cognitive mapping, orientation, and mobility skills Multisensory virtual environment for supporting blind persons acquisition of spatial cognitive mapping, orientation, and mobility skills O Lahav and D Mioduser School of Education, Tel Aviv University,

More information

EVALUATION OF DIFFERENT MODALITIES FOR THE INTELLIGENT COOPERATIVE INTERSECTION SAFETY SYSTEM (IRIS) AND SPEED LIMIT SYSTEM

EVALUATION OF DIFFERENT MODALITIES FOR THE INTELLIGENT COOPERATIVE INTERSECTION SAFETY SYSTEM (IRIS) AND SPEED LIMIT SYSTEM Effects of ITS on drivers behaviour and interaction with the systems EVALUATION OF DIFFERENT MODALITIES FOR THE INTELLIGENT COOPERATIVE INTERSECTION SAFETY SYSTEM (IRIS) AND SPEED LIMIT SYSTEM Ellen S.

More information

AGILE USER EXPERIENCE

AGILE USER EXPERIENCE AGILE USER EXPERIENCE Tina Øvad Radiometer Medical ApS and Aalborg University tina.oevad.pedersen@radiometer.dk ABSTRACT This paper describes a PhD project, exploring the opportunities of integrating the

More information

Course Syllabus. P age 1 5

Course Syllabus. P age 1 5 Course Syllabus Course Code Course Title ECTS Credits COMP-263 Human Computer Interaction 6 Prerequisites Department Semester COMP-201 Computer Science Spring Type of Course Field Language of Instruction

More information