MATLAB/GUI Simulation Tool for Power System Fault Analysis with Neural Network Fault Classifier

Size: px
Start display at page:

Download "MATLAB/GUI Simulation Tool for Power System Fault Analysis with Neural Network Fault Classifier"

Transcription

1 MATLAB/GUI Simulation Tool for Power System Fault Analysis with Neural Network Fault Classifier Ph Chitaranjan Sharma, Ishaan Pandiya, Dipak Swargari, Kusum Dangi * Department of Electrical Engineering, Malaviya National Institute of Technology, Jaipur Abstract This paper proposes a MATLAB based Graphical User Interface (GUI) tool which can serves as a user friendly visual tool for power system fault analysis. This GUI calculates fault level voltages and currents for all the different types of faults and displays them along with their waveforms accordingly. The GUI will serve as an educational tool to help the students understand the intricacies involved in fault analysis. Different Artificial Neural Network (ANN) architectures are proposed for designing an appropriate classifier for classification of the different types of faults that occurs in a real system. Finally, in order to test the classifier in test system conditions it is integrated with the developed GUI. Introduction A huge amount of capital investment is made at present to generate electric power and transmit it over a long distance to consumers in a stable, viable and optimal fashion. To attain stable supply of electrical power, the power system must be reliable. It is also important to run the power system at high or peak efficiencies and protect it from unavoidable accidents or faults. Faults usually occur due to insulation failure, flashover, physical damage or human error. It can be broadly classified as symmetrical fault and unsymmetrical fault. Power system fault analysis provides the necessary information for the proper selection of switchgear, setting of relay and stability of system operation. The problem consists of determining bus voltages, line current fault level MVA during various types of faults. The three phase balanced fault is used to select and set phase relays, while line-to-ground fault is used for ground relays. Fault study thus helps in improving the stability and reliability of the whole system. The proposed GUI tool will serves as a fast and accurate visual tool for fault analysis. It calculates the various fault levels and presents them in the GUI screen along with the waveforms of the current and voltages. Authors in [1,4] have also presented different GUI tools for fault analysis but they seem to lack in one or the other important aspects such as the line diagram of the system in consideration, the waveforms etc. This paper rather presents a complete tool for the analysis of fault. Power system transmission line fault identification is very important to ensure quality performance of the power system. Since the restoration of power requires extremely quick judgement, it is important to classify the fault in a very short period of

2 time. Several techniques have been implemented for analysis of power system faults. Conventional approaches have some difficulties in achieving the desired speed, selectivity and accuracy. Neural networks posses powerful characteristics such as fast learning, fault tolerance and ability to produce correct output when fed with partial input. Hence it can be used for fault classification at high speed and accuracy. The classification has been done using Multi Layer Perceptron (MLP) and Probabilistic Neural Network (PNN) architectures. A comparative study has been made between the two architectures to determine the better classifier. After the selection of the better classifier has been made, it is integrated with the developed GUI for further testing. Here GUI is used as a simulator which acts a test system and provides required input to the ANN classifier. The various voltages and currents at the different buses during a fault condition are generated by the GUI and are given to the ANN classifier. The classifier classifies the type of fault that has occurred and displays on in the GUI screen. GUI tool for power system fault analysis A MATLAB GUI tool has been developed using the Graphical User Interface Development Environment (GUIDE) toolbox to calculate the short-circuit fault currents and fault voltages in power transmission lines. Presented program provides the calculation of three-phase, single line-to-ground, line-to-line, and double line-to-ground faults on transmission lines. Balanced three phase fault are analysed using a single phase equivalent circuit and unbalanced faults are analysed using the symmetrical components method. The process of creation of a GUI using GUIDE consists of two steps: creation of a layout and programming of the GUI. Firstly the type of components needed, interaction required and the technique that is to be used is determined. Then using the Layout Editor the components such as tables, text box, axes, push buttons, panels etc. are added to the GUI. After laying out work is done the GUI is saved which creates a corresponding.fig file and an.m file. Then the GUI is programmed by adding the corresponding callbacks to each component. The flowchart below gives the stepwise explanation of the programming procedure: Read positive /negative and zero sequence impedances Read Base MVA and the Faulted Bus No. Calculation of various Fault Level Currents and Voltages Determine the fault Currents and Voltages and plot their corresponding waveforms Display the Voltages and Currents in the corresponding boxes Figure 1: Flowchart showing the procedure for working of GUI. Firstly the positive/negative and zero sequence impedances are taken in the form of two tables namely Zdata1 and Zdata0. This includes all the impedances of the generators, transformers and the lines connecting the different buses. Then

3 using this data the corresponding impedance matrix is formed. After this the faulted bus number and the base MVA is also entered in the corresponding text boxes. Then the callbacks corresponding to each of the pushbuttons which represent the different types of the faults are programmed. Each of these callback functions comprises of codes and functions for the calculation of fault levels corresponding to particular the fault type. The inputs to these functions are the bus impedance matrices. Line-to-ground fault and the double line to ground fault requires the positive, negative and zero sequence bus impedance matrices. While the double-line fault function requires the positive and negative bus impedance matrices only. A single click to any of these pushbuttons will execute its corresponding callbacks which calculate various fault level currents and voltages. The per unit values of the fault voltages and currents and the fault level MVA are displayed. The GUI also determines the signals of Currents and Voltages and plots their corresponding waveforms in the axes. The line diagram of the system is also displayed which indicates the faulted bus. A sample test system [5] consisting of 11 buses and 3 generating units is taken to check the validity of the developed GUI tool Figure 2: Single line diagram of the test system. The developed GUI tool showing various results is given below Figure 3: GUI showing a Single Line to Ground fault at Bus no. 8

4 A Generalized GUI The developed GUI tool is so programmed that any new system can be loaded for which the analysis of faults can be performed. Loading of a new system to the GUI can be done in two ways. Firstly By directly changing the system impedance values in the tables (zdata1 and zdata0) of the INPUT panel. This procedure is limited to systems containing up to 40 buses and 60 lines. Moreover the picture of the line diagram of the system cannot be loaded using this procedure. When it comes to a larger system containing a large number of system components, direct data entry becomes practically unfeasible. So an attempt has been made to enable the loading files containing large system data. This can be done by clicking the pushbutton in the OPEN Panel. The data of a new system can be entered as three different files. The first two files (.m file format) contains the impedance data of the positive/negative and zero sequence. And the third file is the picture file (preferably.jpg file) of the line diagram of the new system. Clicking the push button in the open panel triggers the following processes: >> Enter the name of the file containing Zdata1 data in single quotes -> 'zdata1.m' >> Enter the name of the file containing Zdata0 data in single quotes ->'zdata0.m' >> Enter the name of the picture file (single line diagram) in single quotes ->'newsyspic.jpg' Power system fault classification using neural networks The main aim of power system fault classification is to classify the fault into one of the types according the current and voltage patterns. It is one of the key components in digital protection systems. Elements of inputs represent measurements of features selected to be useful for distinguishing between classes. Recent studies show that neural network based classifiers offer many advantages over their conventional counterparts. The design of neural network based fault classifiers for transmission lines involves four basic tasks: (i) collecting or producing sets of sample of faulted voltage and current waveforms (ii) pre-processing the data and extracting useful information (iii) choosing and training the most appropriate neural network (iv) testing of the trained neural network. In this paper MLP and PNN architectures are used to design the classifier. Design of MLP based Fault Classifier For performing fault classification for a particular system, the first task involves the creation of the network. Six input vectors consisting of the voltages and currents of all the phases are chosen. A target vector defining the type of the fault is also taken. The following are the inputs and targets of the neural network classifier. Inputs: 3 voltages of phases a, b and c. 3 currents of all phases a, b, c. Target: Type of the faults characterised by numbers from 1 to 10.

5 V a V b V c I a I b I c ANN Classifier SLG DL DLG 3LG Figure 4: Fault type detection using ANN classifier. A system with 11 buses which was considered earlier (Figure 2) is taken. A data table consisting of all the input vectors and targets for all the types of the fault in all the buses of the system are created. It consists of 110 samples. The data table is then normalised. An adequate normalization, not only for the network output variables but also for the input ones prior to the training process is very important to obtain good result and reduce significantly the calculation time. Training algorithm generally works best when the network inputs and targets are scaled, inputs and outputs are normalized into a specific range. Normalization is done in a range from 0 to 1.The formulae used for the normalization process is given by: Then the normalized data table is used in creating the feed forward network (MLP Neural Network). The network is then trained using 60-80% of the data samples. After the network is trained, it is being tested for the full data set that is with all the 110 samples. The performance of the network is then measured. The performances of the classifiers are gauged in terms of measures likeclassification accuracy, execution time and misclassification rate. The following plot shows the samples that are correctly classified or misclassified. The black circles represent the target values and the red dot represents the output of the MLP classifier. Misclassifi cation Number of Testing samples Figure 5: Performance plot for testing of MLP classifier. In the table shown below, parameters liked training algorithm, number of training samples etc. are varied in order to improve the performance of the classifier. It is observed that with the increase in the number of training samples the error reduces. The performance of Table 1: Performance of MLP classifier with 6 features.

6 the classifier is also affected by the number of hidden layer and the number of neurons in the hidden layer. As seen from the results tabulated above, for the MLP classifier the mean square error reduces as the number of neurons in the hidden layers is increased. It is also observed that the classifier gives approximately same results with two training algorithms takentrainlm and trainscg. Design of PNN Classifier The same procedure that has been adopted to create the MLP classifier is used in the creation of the PNN classifier. The data table created for the test system taken before is used to create the PNN classifier. Then the networked is trained for some percentage of the input samples (60-70%). The trained network is then tested for the whole 110 data samples. It is observed that the number of misclassification is zero i.e. the error in the classification is zero. The performance of the PNN classifier is plotted in figure 6. Number of testing samples Figure 6: Performance Plot for testing of the PNN classifier. Comparison of MLP and PNN Classifier The performances of the MLP and PNN based classifiers are compared for the determination of a better classifier. Table 6 given next page shows the comparison between the two types of Neural Network Classifiers. From the comparison table we can conclude that PNN classifier gives a better result giving zero misclassifications. The average Table 2: Performance of PNN classifier with 6 features. Table 2 shows the performance of the PNN classifier for the purpose of power system fault classification. The various performance parameters are calculated for different sets of architectures, No. of training/testing samples, error in classification and the elapsed time are noted for all the cases. training time is also lesser in case of PNN classifier. Hence, PNN architecture is more appropriate for designing the fault classifier. This classifier is further used to integrate with the GUI tool for further testing.

7 MLP Classifier PNN Classifier the fault that is created by the GUI. Average Error in Training = 2.9% Error in Testing = 3.8 % Average Training time = 2.7 sec Average No. of Misclassifications = 4 Average Error in training = 0% Average Error in Testing = 0% Average Training time = sec Average No. of Misclassifications= 0 Table 3: Comparison between MLP and PNN classifier. GUI (Simulates the condition of a real system) Provides the classifier with voltages and currents ANN Classifier (Identifies the type of fault) Takes its Input from GUI INTEGRATION OF ANN CLASSIFIER & GUI Integration of GUI Tool with ANN classifier An attempt has been made to integrate the ANN classifier in the previously developed GUI tool. This is to test the working of the classifier in test system conditions. Here the GUI acts as a simulator to simulate the conditions that prevail in a test system. Different types of fault can be created by the GUI tool. The GUI will provide the input of the ANN classifier i.e. the voltages and currents during the occurrence of the fault. Then the classifier can classify Figure 7: Integration of ANN classifier and GUI tool. For this integration a new panel called ANN CLASSIFIER OUTPUT. In this panel two edit box are added to display the type of the fault and the time taken for the classification. The input provided by the GUI is taken by the classifier. The classifier then normalises its input, loads its pre-trained network and then identifies the fault type that is occurring in the GUI. The time take in this process is also calculated. Thus by integrating the two we can Figure 8: Integration of GUI and ANN classifier.

8 test the performance of the classifier and the time taken for the classification. The new GUI with the ANN classifier is shown in the figure below. Conclusion The developed GUI tool can be used as an educational tool for power systems. Students tend to have difficulties in understanding the concept of faults and method of calculations. Using visual tools to calculate and present the variations, makes the concept of fault more understandable and lasting to the students. With GUI, anyone without the knowledge of programming can start applying this application software to solve the problem more efficiently. The GUI environment keeps most of the tedious and repetitive calculations in the background, allowing the user to spend more time in the analysis of the results obtained. ANN Fault Classifiers can be used to accurately find out the type of fault that occurs in a real system within a very short period of time. The comparison between MLP and PNN based classifier shows that PNN classifier is faster and more accurate. The integration of GUI and ANN classifier was tested on a computer having an Intel Core 2 Duo processor of 1.66 GHz and the average classification time was about 1.9 ms, which was quite fast. More components in the developed GUI tool can be added to make it a more powerful tool. For example the waveforms during the transient conditions can be imparted so as to enable a user to study the stability of the system. Digital meters can be employed to record the voltages and currents in the system. Using this data, the ANN classifier can be used with relays to design a high speed protective relay that can be used to support the conventional protective relaying system. The developed classifier can be integrated with a fault locator which can be designed by using pattern recognition in neural networks so that it can work as an independent relaying system which can detect, locate and classify the fault and give commands to clear out the fault. References [1] Savas Koç, Zafer Aydoğmus, A Matlab/GUI Based Fault Simulation Tool for Power System Education Mathematical and Computational application, Vol.14 no. 3 pp [2] Y. Fukuyama, Y.Ueki Fault analysis system using neural networks and artificial intelligence Fuji Electric Corporate Research and Development, Ltd. No. 1, Fujimachi Hino-city, Tokyo 191 Japan, /93, IEEE [3] Paul M. Anderson, Analysis of Faulted Power Systems IEEE Press Power System Engineering Series, New York, 1995 [4] M G Rabbanil MATLAB Based Fault Analysis Toolbox for Electrical Power System 4 th International Conference on Electrical and Computer Engineering ICECE 2006, December [5] Hadi Saadat, Power System Analysis, Tata McGraw-Hill 2002.

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE K.Satyanarayana 1, Saheb Hussain MD 2, B.K.V.Prasad 3 1 Ph.D Scholar, EEE Department, Vignan University (A.P), India, ksatya.eee@gmail.com

More information

SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP

SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP SHORT CIRCUIT ANALYSIS OF 220/132 KV SUBSTATION BY USING ETAP Kiran V. Natkar 1, Naveen Kumar 2 1 Student, M.E., Electrical Power System, MSS CET/ Dr. B.A.M. University, (India) 2 Electrical Power System,

More information

Fault Detection in Double Circuit Transmission Lines Using ANN

Fault Detection in Double Circuit Transmission Lines Using ANN International Journal of Research in Advent Technology, Vol.3, No.8, August 25 E-ISSN: 232-9637 Fault Detection in Double Circuit Transmission Lines Using ANN Chhavi Gupta, Chetan Bhardwaj 2 U.T.U Dehradun,

More information

Online Diagnosis and Monitoring for Power Distribution System

Online Diagnosis and Monitoring for Power Distribution System Energy and Power Engineering, 1,, 59-53 http://dx.doi.org/1.3/epe.1. Published Online November 1 (http://www.scirp.org/journal/epe) Online Diagnosis and Monitoring for Power Distribution System Atef Almashaqbeh,

More information

Teaching Distance Relay Using Matlab/Simulink Graphical User Interface

Teaching Distance Relay Using Matlab/Simulink Graphical User Interface Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 264 270 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 1 - Electronic and Electrical

More information

Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line

Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line DOI: 10.7763/IPEDR. 2014. V75. 11 Artificial Neural Network Based Fault Locator for Single Line to Ground Fault in Double Circuit Transmission Line Aravinda Surya. V 1, Ebha Koley 2 +, AnamikaYadav 3 and

More information

Discrete Wavelet Transform and Support Vector Machines Algorithm for Classification of Fault Types on Transmission Line

Discrete Wavelet Transform and Support Vector Machines Algorithm for Classification of Fault Types on Transmission Line Discrete Wavelet Transform and Support Vector Machines Algorithm for Classification of Fault Types on Transmission Line K. Kunadumrongrath and A. Ngaopitakkul, Member, IAENG Abstract This paper proposes

More information

SERIES (OPEN CONDUCTOR) FAULT DISTANCE LOCATION IN THREE PHASE TRANSMISSION LINE USING ARTIFICIAL NEURAL NETWORK

SERIES (OPEN CONDUCTOR) FAULT DISTANCE LOCATION IN THREE PHASE TRANSMISSION LINE USING ARTIFICIAL NEURAL NETWORK 1067 SERIES (OPEN CONDUCTOR) FAULT DISTANCE LOCATION IN THREE PHASE TRANSMISSION LINE USING ARTIFICIAL NEURAL NETWORK A Nareshkumar 1 1 Assistant professor, Department of Electrical Engineering Institute

More information

AN ANN BASED FAULT DETECTION ON ALTERNATOR

AN ANN BASED FAULT DETECTION ON ALTERNATOR AN ANN BASED FAULT DETECTION ON ALTERNATOR Suraj J. Dhon 1, Sarang V. Bhonde 2 1 (Electrical engineering, Amravati University, India) 2 (Electrical engineering, Amravati University, India) ABSTRACT: Synchronous

More information

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF

CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 95 CHAPTER 6 BACK PROPAGATED ARTIFICIAL NEURAL NETWORK TRAINED ARHF 6.1 INTRODUCTION An artificial neural network (ANN) is an information processing model that is inspired by biological nervous systems

More information

SMARTPHONE SENSOR BASED GESTURE RECOGNITION LIBRARY

SMARTPHONE SENSOR BASED GESTURE RECOGNITION LIBRARY SMARTPHONE SENSOR BASED GESTURE RECOGNITION LIBRARY Sidhesh Badrinarayan 1, Saurabh Abhale 2 1,2 Department of Information Technology, Pune Institute of Computer Technology, Pune, India ABSTRACT: Gestures

More information

Transient stability Assessment using Artificial Neural Network Considering Fault Location

Transient stability Assessment using Artificial Neural Network Considering Fault Location Vol.6 No., 200 مجلد 6, العدد, 200 Proc. st International Conf. Energy, Power and Control Basrah University, Basrah, Iraq 0 Nov. to 2 Dec. 200 Transient stability Assessment using Artificial Neural Network

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Distance Protection Scheme for Transmission Lines

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Distance Protection Scheme for Transmission Lines Technology (IJRSET Distance Protection Scheme for Transmission Lines S.Tharun Kumar 1, M.Karthikeyan 2, M.nand 3, S.K.Surya 4 1,3,4 Department of EEE, 2 ssistant Professor, Department of EEE Velammal Engineering

More information

Accurate Hybrid Method for Rapid Fault Detection, Classification and Location in Transmission Lines using Wavelet Transform and ANNs

Accurate Hybrid Method for Rapid Fault Detection, Classification and Location in Transmission Lines using Wavelet Transform and ANNs From the SelectedWorks of Innovative Research Publications IRP India Summer May 1, 215 Accurate Hybrid Method for Rapid Fault Detection, Classification and Location in Transmission Lines using Wavelet

More information

Fault Detection Using Hilbert Huang Transform

Fault Detection Using Hilbert Huang Transform International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org Fault Detection Using Hilbert Huang Transform Balvinder Singh 1,

More information

Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors

Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors Int. J. Advanced Networking and Applications 1053 Using of Artificial Neural Networks to Recognize the Noisy Accidents Patterns of Nuclear Research Reactors Eng. Abdelfattah A. Ahmed Atomic Energy Authority,

More information

IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS

IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS Fourth International Conference on Control System and Power Electronics CSPE IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS Mr. Devadasu * and Dr. M Sushama ** * Associate

More information

Protection of Extra High Voltage Transmission Line Using Distance Protection

Protection of Extra High Voltage Transmission Line Using Distance Protection Protection of Extra High Voltage Transmission Line Using Distance Protection Ko Ko Aung 1, Soe Soe Ei Aung 2 Department of Electrical Power Engineering Yangon Technological University, Insein Township

More information

Enhanced Real Time and Off-Line Transmission Line Fault Diagnosis Using Artificial Intelligence

Enhanced Real Time and Off-Line Transmission Line Fault Diagnosis Using Artificial Intelligence Enhanced Real Time and Off-Line Transmission Line Fault Diagnosis Using Artificial Intelligence Okwudili E. Obi, Oseloka A. Ezechukwu and Chukwuedozie N. Ezema 0 Enhanced Real Time and Off-Line Transmission

More information

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM 1 VIJAY KUMAR SAHU, 2 ANIL P. VAIDYA 1,2 Pg Student, Professor E-mail: 1 vijay25051991@gmail.com, 2 anil.vaidya@walchandsangli.ac.in

More information

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS 66 CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS INTRODUCTION The use of electronic controllers in the electric power supply system has become very common. These electronic

More information

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016

Artificial Neural Networks. Artificial Intelligence Santa Clara, 2016 Artificial Neural Networks Artificial Intelligence Santa Clara, 2016 Simulate the functioning of the brain Can simulate actual neurons: Computational neuroscience Can introduce simplified neurons: Neural

More information

A Novel Fuzzy Neural Network Based Distance Relaying Scheme

A Novel Fuzzy Neural Network Based Distance Relaying Scheme 902 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 3, JULY 2000 A Novel Fuzzy Neural Network Based Distance Relaying Scheme P. K. Dash, A. K. Pradhan, and G. Panda Abstract This paper presents a new

More information

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach

Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert Transform Approach SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 1 Issue 10 Dec 014 Decriminition between Magnetising Inrush from Interturn Fault Current in Transformer: Hilbert

More information

Artificial Neural Network based Fault Classifier and Distance

Artificial Neural Network based Fault Classifier and Distance IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 02, 2014 ISSN (online): 2321-0613 Artificial Neural Network based Fault Classifier and Brijesh R. Solanki 1 Dr. MahipalSinh

More information

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL Basically the HVDC transmission consists in the basic case of two convertor stations which are connected to each other by a transmission link consisting of an overhead

More information

Classification of Signals with Voltage Disturbance by Means of Wavelet Transform and Intelligent Computational Techniques.

Classification of Signals with Voltage Disturbance by Means of Wavelet Transform and Intelligent Computational Techniques. Proceedings of the 6th WSEAS International Conference on Power Systems, Lison, Portugal, Septemer 22-24, 2006 435 Classification of Signals with Voltage Disturance y Means of Wavelet Transform and Intelligent

More information

IDENTIFYING TYPES OF SIMULTANEOUS FAULT IN TRANSMISSION LINE USING DISCRETE WAVELET TRANSFORM AND FUZZY LOGIC ALGORITHM

IDENTIFYING TYPES OF SIMULTANEOUS FAULT IN TRANSMISSION LINE USING DISCRETE WAVELET TRANSFORM AND FUZZY LOGIC ALGORITHM International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 7, July 2013 pp. 2701 2712 IDENTIFYING TYPES OF SIMULTANEOUS FAULT IN TRANSMISSION

More information

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network International Journal of Smart Grid and Clean Energy Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network R P Hasabe *, A P Vaidya Electrical Engineering

More information

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN

Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter Based UPFC with ANN IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Transient Stability Improvement of Multi Machine Power Systems using Matrix Converter

More information

Keywords: Power System Computer Aided Design, Discrete Wavelet Transform, Artificial Neural Network, Multi- Resolution Analysis.

Keywords: Power System Computer Aided Design, Discrete Wavelet Transform, Artificial Neural Network, Multi- Resolution Analysis. GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES IDENTIFICATION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES BY AN EFFECTIVE WAVELET BASED NEURAL CLASSIFIER Prof. A. P. Padol Department of Electrical

More information

Voltage Sag Source Location Using Artificial Neural Network

Voltage Sag Source Location Using Artificial Neural Network International Journal of Current Engineering and Technology, Vol.2, No.1 (March 2012) ISSN 2277-4106 Research Article Voltage Sag Source Using Artificial Neural Network D.Justin Sunil Dhas a, T.Ruban Deva

More information

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL * A. K. Sharma, ** R. A. Gupta, and *** Laxmi Srivastava * Department of Electrical Engineering,

More information

[Nayak, 3(2): February, 2014] ISSN: Impact Factor: 1.852

[Nayak, 3(2): February, 2014] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Classification of Transmission Line Faults Using Wavelet Transformer B. Lakshmana Nayak M.TECH(APS), AMIE, Associate Professor,

More information

Characterization of Voltage Dips due to Faults and Induction Motor Starting

Characterization of Voltage Dips due to Faults and Induction Motor Starting Characterization of Voltage Dips due to Faults and Induction Motor Starting Miss. Priyanka N.Kohad 1, Mr..S.B.Shrote 2 Department of Electrical Engineering & E &TC Pune, Maharashtra India Abstract: This

More information

Fault Detection and Diagnosis-A Review

Fault Detection and Diagnosis-A Review Fault Detection and Diagnosis-A Review Karan Mehta 1, Dinesh Kumar Sharma 2 1 IV year Student, Department of Electronic Instrumentation and Control, Poornima College of Engineering 2 Assistant Professor,

More information

Characterization of Voltage Sag due to Faults and Induction Motor Starting

Characterization of Voltage Sag due to Faults and Induction Motor Starting Characterization of Voltage Sag due to Faults and Induction Motor Starting Dépt. of Electrical Engineering, SSGMCE, Shegaon, India, Dépt. of Electronics & Telecommunication Engineering, SITS, Pune, India

More information

Application of Wavelet Transform in Power System Analysis and Protection

Application of Wavelet Transform in Power System Analysis and Protection Application of Wavelet Transform in Power System Analysis and Protection Neha S. Dudhe PG Scholar Shri Sai College of Engineering & Technology, Bhadrawati-Chandrapur, India Abstract This paper gives a

More information

Voltage sag assessment and Area of vulnerability due to balanced fault for 11 bus system

Voltage sag assessment and Area of vulnerability due to balanced fault for 11 bus system I J E E E C International Journal of Electrical, Electronics ISSN. (Online) : 2277-2626 and Computer Engineering 2(1): 41-47(2013) Voltage sag assessment and Area of vulnerability due to balanced fault

More information

Characterization of LF and LMA signal of Wire Rope Tester

Characterization of LF and LMA signal of Wire Rope Tester Volume 8, No. 5, May June 2017 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info ISSN No. 0976-5697 Characterization of LF and LMA signal

More information

DC Motor Speed Control using Artificial Neural Network

DC Motor Speed Control using Artificial Neural Network International Journal of Modern Communication Technologies & Research (IJMCTR) ISSN: 2321-0850, Volume-2, Issue-2, February 2014 DC Motor Speed Control using Artificial Neural Network Yogesh, Swati Gupta,

More information

LabVIEW based Intelligent Frontal & Non- Frontal Face Recognition System

LabVIEW based Intelligent Frontal & Non- Frontal Face Recognition System LabVIEW based Intelligent Frontal & Non- Frontal Face Recognition System Muralindran Mariappan, Manimehala Nadarajan, and Karthigayan Muthukaruppan Abstract Face identification and tracking has taken a

More information

ARTIFICIAL NEURAL NETWORK BASED FAULT LOCATION FOR TRANSMISSION LINES

ARTIFICIAL NEURAL NETWORK BASED FAULT LOCATION FOR TRANSMISSION LINES University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2011 ARTIFICIAL NEURAL NETWORK BASED FAULT LOCATION FOR TRANSMISSION LINES Suhaas Bhargava Ayyagari University of

More information

Three Zone Protection By Using Distance Relays in SIMULINK/MATLAB

Three Zone Protection By Using Distance Relays in SIMULINK/MATLAB International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Three Zone Protection By Using Distance Relays in SIMULINK/MATLAB M.Rambabu 1, M.Venkatesh 2, J.S.V.SivaKumar 3, T.S.L.V.AyyaRao

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SPECIAL ISSUE FOR NATIONAL LEVEL CONFERENCE "Technology Enabling Modernization

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 BACKGROUND The increased use of non-linear loads and the occurrence of fault on the power system have resulted in deterioration in the quality of power supplied to the customers.

More information

A Guide to the DC Decay of Fault Current and X/R Ratios

A Guide to the DC Decay of Fault Current and X/R Ratios A Guide to the DC Decay of Fault Current and X/R Ratios Introduction This guide presents a guide to the theory of DC decay of fault currents and X/R ratios and the calculation of these values in Ipsa.

More information

Detection and Classification of Power Quality Event using Discrete Wavelet Transform and Support Vector Machine

Detection and Classification of Power Quality Event using Discrete Wavelet Transform and Support Vector Machine Detection and Classification of Power Quality Event using Discrete Wavelet Transform and Support Vector Machine Okelola, Muniru Olajide Department of Electronic and Electrical Engineering LadokeAkintola

More information

ANALYSIS OF CITIES DATA USING PRINCIPAL COMPONENT INPUTS IN AN ARTIFICIAL NEURAL NETWORK

ANALYSIS OF CITIES DATA USING PRINCIPAL COMPONENT INPUTS IN AN ARTIFICIAL NEURAL NETWORK DOI: http://dx.doi.org/10.7708/ijtte.2018.8(3).02 UDC: 004.8.032.26 ANALYSIS OF CITIES DATA USING PRINCIPAL COMPONENT INPUTS IN AN ARTIFICIAL NEURAL NETWORK Villuri Mahalakshmi Naidu 1, Chekuri Siva Rama

More information

COMBINATION OF DISCRETE WAVELET TRANSFORM AND PROBABILISTIC NEURAL NETWORK ALGORITHM FOR DETECTING FAULT LOCATION ON TRANSMISSION SYSTEM

COMBINATION OF DISCRETE WAVELET TRANSFORM AND PROBABILISTIC NEURAL NETWORK ALGORITHM FOR DETECTING FAULT LOCATION ON TRANSMISSION SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 2011 ISSN 1349-4198 Volume 7, Number 4, April 2011 pp. 1861 1873 COMBINATION OF DISCRETE WAVELET TRANSFORM AND

More information

Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link.

Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link. Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link. Mr.S.B.Dandawate*, Mrs.S.L.Shaikh** *,**(Department of Electrical Engineering, Walchand College of

More information

A DWT Approach for Detection and Classification of Transmission Line Faults

A DWT Approach for Detection and Classification of Transmission Line Faults IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 02 July 2016 ISSN (online): 2349-6010 A DWT Approach for Detection and Classification of Transmission Line Faults

More information

Artificial Neural Networks approach to the voltage sag classification

Artificial Neural Networks approach to the voltage sag classification Artificial Neural Networks approach to the voltage sag classification F. Ortiz, A. Ortiz, M. Mañana, C. J. Renedo, F. Delgado, L. I. Eguíluz Department of Electrical and Energy Engineering E.T.S.I.I.,

More information

Modeling and Performance Analysis of Mho-Relay in Matlab

Modeling and Performance Analysis of Mho-Relay in Matlab Modeling and Performance Analysis of Mho-Relay in Matlab Purra Sai Kiran M.Tech Student, Padmasri Dr. B V Raju Institute of Technology, Narsapur, Medak, Telangana. ABSTRACT: This paper describes the opportunity

More information

Dwt-Ann Approach to Classify Power Quality Disturbances

Dwt-Ann Approach to Classify Power Quality Disturbances Dwt-Ann Approach to Classify Power Quality Disturbances Prof. Abhijit P. Padol Department of Electrical Engineering, abhijit.padol@gmail.com Prof. K. K. Rajput Department of Electrical Engineering, kavishwarrajput@yahoo.co.in

More information

Classification of Voltage Sag Using Multi-resolution Analysis and Support Vector Machine

Classification of Voltage Sag Using Multi-resolution Analysis and Support Vector Machine Journal of Clean Energy Technologies, Vol. 4, No. 3, May 2016 Classification of Voltage Sag Using Multi-resolution Analysis and Support Vector Machine Hanim Ismail, Zuhaina Zakaria, and Noraliza Hamzah

More information

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 53 CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 4.1 INTRODUCTION Due to economic reasons arising out of deregulation and open market of electricity,

More information

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE POWER SYSTEM VOLTAGE STABILITY ANALYSIS AND ASSESSMENT USING ARTIFICIAL NEURAL NETWORK

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE POWER SYSTEM VOLTAGE STABILITY ANALYSIS AND ASSESSMENT USING ARTIFICIAL NEURAL NETWORK CALIFORNIA STATE UNIVERSITY, NORTHRIDGE POWER SYSTEM VOLTAGE STABILITY ANALYSIS AND ASSESSMENT USING ARTIFICIAL NEURAL NETWORK A graduate project submitted in partial fulfillment of the requirements For

More information

AUTOMATIC SPEECH RECOGNITION FOR NUMERIC DIGITS USING TIME NORMALIZATION AND ENERGY ENVELOPES

AUTOMATIC SPEECH RECOGNITION FOR NUMERIC DIGITS USING TIME NORMALIZATION AND ENERGY ENVELOPES AUTOMATIC SPEECH RECOGNITION FOR NUMERIC DIGITS USING TIME NORMALIZATION AND ENERGY ENVELOPES N. Sunil 1, K. Sahithya Reddy 2, U.N.D.L.mounika 3 1 ECE, Gurunanak Institute of Technology, (India) 2 ECE,

More information

Automatic Generation Control of Three Area Power Systems Using Ann Controllers

Automatic Generation Control of Three Area Power Systems Using Ann Controllers International Journal of Computational Engineering Research Vol, 03 Issue, 6 Automatic Generation Control of Three Area Power Systems Using Ann Controllers Nehal Patel 1, Prof.Bharat Bhusan Jain 2 1&2

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 12,December -2015 E-ISSN (O): 2348-4470 P-ISSN (P): 2348-6406 Detection

More information

Application of Multi Layer Perceptron (MLP) for Shower Size Prediction

Application of Multi Layer Perceptron (MLP) for Shower Size Prediction Chapter 3 Application of Multi Layer Perceptron (MLP) for Shower Size Prediction 3.1 Basic considerations of the ANN Artificial Neural Network (ANN)s are non- parametric prediction tools that can be used

More information

CHAPTER 3 SOFTWARE DEVELOPMENT. communications, control design, test and measurement, financial modeling and analysis,

CHAPTER 3 SOFTWARE DEVELOPMENT. communications, control design, test and measurement, financial modeling and analysis, CHAPTER 3 SOFTWARE DEVELOPMENT 3.1 Introduction MATLAB has a wide range of applications, including signal and image processing, communications, control design, test and measurement, financial modeling

More information

MODELLING OF TWIN ROTOR MIMO SYSTEM (TRMS)

MODELLING OF TWIN ROTOR MIMO SYSTEM (TRMS) MODELLING OF TWIN ROTOR MIMO SYSTEM (TRMS) A PROJECT THESIS SUBMITTED IN THE PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN ELECTRICAL ENGINEERING BY ASUTOSH SATAPATHY

More information

Detection and Classification of One Conductor Open Faults in Parallel Transmission Line using Artificial Neural Network

Detection and Classification of One Conductor Open Faults in Parallel Transmission Line using Artificial Neural Network Detection and Classification of One Conductor Open Faults in Parallel Transmission Line using Artificial Neural Network A.M. Abdel-Aziz B. M. Hasaneen A. A. Dawood Electrical Power and Machines Eng. Dept.

More information

Use of Neural Networks in Testing Analog to Digital Converters

Use of Neural Networks in Testing Analog to Digital Converters Use of Neural s in Testing Analog to Digital Converters K. MOHAMMADI, S. J. SEYYED MAHDAVI Department of Electrical Engineering Iran University of Science and Technology Narmak, 6844, Tehran, Iran Abstract:

More information

Voltage Stability Assessment in Power Network Using Artificial Neural Network

Voltage Stability Assessment in Power Network Using Artificial Neural Network Voltage Stability Assessment in Power Network Using Artificial Neural Network Swetha G C 1, H.R.Sudarshana Reddy 2 PG Scholar, Dept. of E & E Engineering, University BDT College of Engineering, Davangere,

More information

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHINE

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHINE A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND OTHER STATISTICAL METHODS FOR ROTATING MACHINE CONDITION CLASSIFICATION A. C. McCormick and A. K. Nandi Abstract Statistical estimates of vibration signals

More information

MINE 432 Industrial Automation and Robotics

MINE 432 Industrial Automation and Robotics MINE 432 Industrial Automation and Robotics Part 3, Lecture 5 Overview of Artificial Neural Networks A. Farzanegan (Visiting Associate Professor) Fall 2014 Norman B. Keevil Institute of Mining Engineering

More information

MAGNT Research Report (ISSN ) Vol.6(1). PP , Controlling Cost and Time of Construction Projects Using Neural Network

MAGNT Research Report (ISSN ) Vol.6(1). PP , Controlling Cost and Time of Construction Projects Using Neural Network Controlling Cost and Time of Construction Projects Using Neural Network Li Ping Lo Faculty of Computer Science and Engineering Beijing University China Abstract In order to achieve optimized management,

More information

Internal Fault Classification in Transformer Windings using Combination of Discrete Wavelet Transforms and Back-propagation Neural Networks

Internal Fault Classification in Transformer Windings using Combination of Discrete Wavelet Transforms and Back-propagation Neural Networks International Internal Fault Journal Classification of Control, in Automation, Transformer and Windings Systems, using vol. Combination 4, no. 3, pp. of 365-371, Discrete June Wavelet 2006 Transforms and

More information

[ENE02] Artificial neural network based arcing fault detection algorithm for underground distribution cable

[ENE02] Artificial neural network based arcing fault detection algorithm for underground distribution cable [ENE02] Artificial neural network based arcing fault detection algorithm for underground distribution cable Chan Wei Kian 1, Abdullah Asuhaimi Mohd. Zin 1, Md. Shah Majid 1, Hussein Ahmad 1, Zaniah Muda

More information

Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device

Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device Neural Network Classifier and Filtering for EEG Detection in Brain-Computer Interface Device Mr. CHOI NANG SO Email: cnso@excite.com Prof. J GODFREY LUCAS Email: jglucas@optusnet.com.au SCHOOL OF MECHATRONICS,

More information

An Ellipse Technique Based Relay For Extra High Voltage Transmission Lines Protection

An Ellipse Technique Based Relay For Extra High Voltage Transmission Lines Protection Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 162. An Ellipse Technique Based Relay For Extra High Voltage

More information

Application Of Artificial Neural Network In Fault Detection Of Hvdc Converter

Application Of Artificial Neural Network In Fault Detection Of Hvdc Converter Application Of Artificial Neural Network In Fault Detection Of Hvdc Converter Madhuri S Shastrakar Department of Electrical Engineering, Shree Ramdeobaba College of Engineering and Management, Nagpur,

More information

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition

Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition Enhanced MLP Input-Output Mapping for Degraded Pattern Recognition Shigueo Nomura and José Ricardo Gonçalves Manzan Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, MG,

More information

Improvement of Classical Wavelet Network over ANN in Image Compression

Improvement of Classical Wavelet Network over ANN in Image Compression International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volume-7, Issue-5, May 2017 Improvement of Classical Wavelet Network over ANN in Image Compression

More information

Discrimination between Inrush and Fault Current in Power Transformer by using Fuzzy Logic

Discrimination between Inrush and Fault Current in Power Transformer by using Fuzzy Logic Discrimination between Inrush and Fault Current in Power Transformer by using Fuzzy Logic Abdussalam 1, Mohammad Naseem 2, Akhaque Ahmad Khan 3 1 Department of Instrumentation & Control Engineering, Integral

More information

ISSN: [Taywade* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Taywade* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY DETECTION AND CLASSIFICATION OF TRANSMISSION LINES FAULTS USING DISCRETE WAVELET TRANSFORM AND ANN AS CLASSIFIER Dhanashri D.

More information

Industrial computer vision using undefined feature extraction

Industrial computer vision using undefined feature extraction University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 1995 Industrial computer vision using undefined feature extraction Phil

More information

Prediction of Missing PMU Measurement using Artificial Neural Network

Prediction of Missing PMU Measurement using Artificial Neural Network Prediction of Missing PMU Measurement using Artificial Neural Network Gaurav Khare, SN Singh, Abheejeet Mohapatra Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur-208016,

More information

The Role of Effective Parameters in Automatic Load-Shedding Regarding Deficit of Active Power in a Power System

The Role of Effective Parameters in Automatic Load-Shedding Regarding Deficit of Active Power in a Power System Volume 7, Number 1, Fall 2006 The Role of Effective Parameters in Automatic Load-Shedding Regarding Deficit of Active Power in a Power System Mohammad Taghi Ameli, PhD Power & Water University of Technology

More information

A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE

A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE Volume 118 No. 22 2018, 961-967 ISSN: 1314-3395 (on-line version) url: http://acadpubl.eu/hub ijpam.eu A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE 1 M.Nandhini, 2 M.Manju,

More information

FAULT LOCATION IN OVERHEAD TRANSMISSION LINE WITHOUT USING LINE PARAMETER

FAULT LOCATION IN OVERHEAD TRANSMISSION LINE WITHOUT USING LINE PARAMETER FAULT LOCATION IN OVERHEAD TRANSMISSION LINE WITHOUT USING LINE PARAMETER 1 JAY PRAKASH KESHRI, 2 HARPAL TIWARI 1,2 Electrical Engineering Department Malaviya National Institute of Technology Jaipur E-mail:

More information

Transmission Line Protection for Symmetrical and Unsymmetrical Faults using Distance Relays

Transmission Line Protection for Symmetrical and Unsymmetrical Faults using Distance Relays Transmission Line Protection for Symmetrical and Unsymmetrical Faults using Distance Relays V.Usha Rani 1, Dr.J.Sridevi 2 Assistant Professor, Dept. of EEE, Gokaraju Rangaraju Institute of Engg.&Tech,

More information

High-Speed Interconnect Technology for Servers

High-Speed Interconnect Technology for Servers High-Speed Interconnect Technology for Servers Hiroyuki Adachi Jun Yamada Yasushi Mizutani We are developing high-speed interconnect technology for servers to meet customers needs for transmitting huge

More information

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network International Journal of Electrical Engineering. ISSN 974-2158 Volume 4, Number 3 (211), pp. 299-39 International Research Publication House http://www.irphouse.com Wavelet Transform for Classification

More information

RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS

RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS 24 th International Conference on Electricity Distribution Glasgow, 2-5 June 27 Paper 97 RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS Pengfei WEI Yonghai XU Yapen WU Chenyi

More information

ARTIFICIAL INTELLIGENCE BASED TUNING OF SVC CONTROLLER FOR CO-GENERATED POWER SYSTEM

ARTIFICIAL INTELLIGENCE BASED TUNING OF SVC CONTROLLER FOR CO-GENERATED POWER SYSTEM ARTIFICIAL INTELLIGENCE BASED TUNING OF SVC CONTROLLER FOR CO-GENERATED POWER SYSTEM 1 Vinod Kumar, 2 R.R.Joshi 1 Asstt Prof., Department of Electrical Engineering, CTAE, Udaipur, India-313001 2 Assoc.

More information

CLASSIFICATION OF POWER QUALITY DISTURBANCES USING WAVELET TRANSFORM AND S-TRANSFORM BASED ARTIFICIAL NEURAL NETWORK

CLASSIFICATION OF POWER QUALITY DISTURBANCES USING WAVELET TRANSFORM AND S-TRANSFORM BASED ARTIFICIAL NEURAL NETWORK CLASSIFICATION OF POWER QUALITY DISTURBANCES USING WAVELET TRANSFORM AND S-TRANSFORM BASED ARTIFICIAL NEURAL NETWORK P. Sai revathi 1, G.V. Marutheswar 2 P.G student, Dept. of EEE, SVU College of Engineering,

More information

Ultra Hight Voltge Transmission line Faults Identified and Analysis by using MATLAB Simulink

Ultra Hight Voltge Transmission line Faults Identified and Analysis by using MATLAB Simulink International Seminar On Non-Conventional Energy Sources for Sustainable Development of Rural Areas, IJAERD- International Journal of Advance Engineering & Research Development e-issn: 2348-4470, p-issn:2348-6406

More information

Performance Assessment of Distance Relay using MATLAB DibyaDarshiniMohanty, Ashwin Sharma, Ashutosh Varma M.S.I.T. M.S.I.T. M.S.I.

Performance Assessment of Distance Relay using MATLAB DibyaDarshiniMohanty, Ashwin Sharma, Ashutosh Varma M.S.I.T. M.S.I.T. M.S.I. Performance Assessment of Distance Relay using MATLAB DibyaDarshiniMohanty, Ashwin Sharma, Ashutosh Varma M.S.I.T. M.S.I.T. M.S.I.T Abstract This paper studies the performance of distance relay using MATLAB.

More information

Visualization and Animation of Protective Relay Operation

Visualization and Animation of Protective Relay Operation Visualization and Animation of Protective Relay Operation A. P. Sakis Meliopoulos School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia 30332 George J. Cokkinides

More information

Application Research on BP Neural Network PID Control of the Belt Conveyor

Application Research on BP Neural Network PID Control of the Belt Conveyor Application Research on BP Neural Network PID Control of the Belt Conveyor Pingyuan Xi 1, Yandong Song 2 1 School of Mechanical Engineering Huaihai Institute of Technology Lianyungang 222005, China 2 School

More information

Implementation and Evaluation a SIMULINK Model of a Distance Relay in MATLAB/SIMULINK

Implementation and Evaluation a SIMULINK Model of a Distance Relay in MATLAB/SIMULINK Implementation and Evaluation a SIMULINK Model of a Distance Relay in MATLAB/SIMULINK Omar G. Mrehel Hassan B. Elfetori AbdAllah O. Hawal Electrical and Electronic Dept. Operation Department Electrical

More information

Performance Analysis on Transmission Line for Improvement of Load Flow

Performance Analysis on Transmission Line for Improvement of Load Flow Performance Analysis on Transmission Line for Improvement of Load Flow YaMinSuHlaing Department of Electrical Power Engineering Mandalay Technological University, Mandalay, Myanmar Yaminsuhlaing.yso@gmail.com

More information

Speech Recognition using FIR Wiener Filter

Speech Recognition using FIR Wiener Filter Speech Recognition using FIR Wiener Filter Deepak 1, Vikas Mittal 2 1 Department of Electronics & Communication Engineering, Maharishi Markandeshwar University, Mullana (Ambala), INDIA 2 Department of

More information

MURDOCH RESEARCH REPOSITORY

MURDOCH RESEARCH REPOSITORY MURDOCH RESEARCH REPOSITORY http://dx.doi.org/10.1109/kes.1999.820143 Zaknich, A. and Attikiouzel, Y. (1999) The classification of sheep and goat feeding phases from acoustic signals of jaw sounds. In:

More information

APPLICATION OF NEURAL NETWORK TRAINED WITH META-HEURISTIC ALGORITHMS ON FAULT DIAGNOSIS OF MULTI-LEVEL INVERTER

APPLICATION OF NEURAL NETWORK TRAINED WITH META-HEURISTIC ALGORITHMS ON FAULT DIAGNOSIS OF MULTI-LEVEL INVERTER APPLICATION OF NEURAL NETWORK TRAINED WITH META-HEURISTIC ALGORITHMS ON FAULT DIAGNOSIS OF MULTI-LEVEL INVERTER 1 M.SIVAKUMAR, 2 R.M.S.PARVATHI 1 Research Scholar, Department of EEE, Anna University, Chennai,

More information

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK CHAPTER 7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK The objective of this work is to design, fabricate and test a harmonic filter configuration, with simple and effective control algorithm under both

More information